Согласно планам реактор БРЕСТ-ОД-300 должен начать работу в 2026 году. Испытания перспективного смешанного нитридного уран-плутониевого топлива российского реактора на быстрых нейтронах со свинцовым теплоносителем (БРЕСТ-ОД-300). Руководитель проекта по созданию БРЕСТ-ОД-300 Андрей Николаев. Руководитель проекта по созданию БРЕСТ-ОД-300 Андрей Николаев.
Россия строит в Сибири ядерный реактор будущего
Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу. реактора четвертого поколения БРЕСТ-ОД-300. Реактор БРЕСТ-ОД-300 работает на быстрых нейтронах, в качестве теплоносителя выступает свинец.
Специалисты НИУ «МЭИ» участвуют в создании реактора БРЕСТ-ОД-300
Но в настоящее время прорыв был осуществлён в области создания так называемых быстрых реакторов. Кстати, комплексная установка так и была названа - «Прорыв». Атомные реакторы нового поколения В настоящее время человечество вплотную подошло к возможности решения проблемы безотходной или почти безотходной добычи энергии. Уточним, что речь не идёт о «зелёной» экономике, способной быть только комплементарным источником ввиду нерентабельности производства. Проект реализуется с 2011 г. Генеральным проектировщиком опытно-демонстрационного энергетического комплекса выступает ВНИПИЭТ «Восточно-Европейский головной научно-исследовательский и проектный институт энергетических технологий», Санкт-Петербург. Работы над невиданным доселе проектом начались аж 40 лет назад, чуть ли не во времена основателя института - академика Н.
Доллежаля, автора знаменитого реактора РБМК. Духовный отец БРЕСТа - академик Николай Антонович Доллежаль - в своё время был подвергнут незаслуженной критике со стороны официозной науки, но выстоял и сумел создать в 1954 г. Это позволяет многократно использовать делящиеся изотопы и минимизировать все меры безопасности ввиду очевидного отсутствия угрозы облучения. Новый реактор - сердце проекта "Прорыв", проекта - подчеркну!
Он предусматривает создание новой технологической платформы на базе технологий замкнутого цикла с использованием реакторов на быстрых нейтронах. Первой в мире страной, которая этого добилась, стала Россия. Он включает три взаимосвязанных промышленных объекта, не имеющих аналогов в мире: модуль по производству уран-плутониевого ядерного топлива, энергоблок БРЕСТ-ОД-300, а также модуль по переработке облученного топлива. Это название реакторной установки на быстрых нейтронах со свинцовым теплоносителем и одновременно обозначение концепции «быстрого» реактора, обладающего свойством естественной безопасности, когда аварии, подобные Чернобылю и Фукусиме, станут невозможны в принципе.
Таким образом эта система постепенно станет практически автономной и независимой от внешних поставок энергоресурсов. Старт строительству энергоблока был дан в рамках Года науки и технологий, объявленного указом Президента РФ Владимира Путина. К этому дню российские и томские атомщики шли долго: на Северской площадке «Росатом» реализует проект «Прорыв» с 2011 года. Десять лет заняло проектирование и подготовительные работы. А благодаря переработке ядерного топлива бесконечное количество раз ее ресурсная база станет практически неисчерпаемой. Сегодня мы вновь подтверждаем свою репутацию лидера мирового прогресса в сфере ядерных технологий, предлагая человечеству уникальные решения, направленные на улучшение жизни людей. Как отметили специалисты-атомщики, именно «первый бетон» служит официальным началом стройки.
Для производства СНУП-топлива на Опытно-демонстрационном энергетическом комплексе будут задействованы четыре технологических линии: линия карботермического синтеза смешанных нитридов урана и плутония, линия изготовления таблеток СНУП-топлива таким образом, производство таблеток будет реализовано в два этапа , линия сборки тепловыделяющих элементов твэлов , а также линия производства комплектных топливных кассет. В настоящее время на производственных линиях ведется пусконаладка смонтированного оборудования. В рамках замкнутого ядерного топливного цикла, реализованного на ОДЭК, облученное топливо, отработавшее в реакторе БРЕСТ-ОД-300, после переработки будет направляться на рефабрикацию то есть повторное изготовление свежего топлива — таким образом эта система постепенно станет практически автономной и независимой от внешних поставок энергоресурсов, кроме обедненного урана из отвалов обогатительных производств. Преимущество реакторов на быстрых нейтронах — способность эффективно использовать для производства энергии вторичные продукты топливного цикла в частности, плутоний. При этом обладая высоким коэффициентом воспроизводства, быстрые реакторы могут производить больше потенциального топлива, чем потребляют, а также дожигать то есть утилизировать с выработкой энергии высокоактивные трансурановые элементы актиниды.
Вскоре после этого в журнале « Ядерный контроль » вышла статья специалиста в области ядерной физики, академика РАН, вице-президента Курчатовского института Николая Пономарёва-Степного [18] , в которой обозначенные президентом цели назывались «не вызывающими сомнений своей необходимостью», однако под сомнение была поставлена возможность их осуществления в ближайшем будущем, а также был подвергнут критике официальный курс на осуществление этих целей с помощью проекта БРЕСТ. В статье констатировалось, что проект реактора БРЕСТ «находится в начальной стадии разработки», а «технология свинцового жидкометаллического теплоносителя на сегодняшний день не отработана». Кроме того, были высказаны сомнения относительно принципиальной возможности решить с помощью реакторов БРЕСТ проблемы крупномасштабной ядерной энергетики , такие, как неограниченное обеспечение топливом, кардинальное решение проблемы нераспространения, естественная безопасность, сжигание радиоактивных элементов и окончательное решение проблемы радиоактивных отходов. Такого рода утверждения были названы Пономарёвым-Степным: не только не доказанными научными и техническими работами, но и спорными по ряду основных положений. Кроме неотработанности технологии, были обозначены «узкие» технические вопросы: в большом объёме интегральной схемы «БРЕСТ» не обеспечивается равномерность поддержания кислородного потенциала в узком разрешённом диапазоне если он будет подтвержден. Чтобы обеспечить работоспособность тепловыделяющих элементов, необходимо найти оптимальное для заданного уровня и диапазона изменения температур содержание кислорода в теплоносителе и стабильно поддерживать его на этом уровне в течение всего срока эксплуатации реакторной установки; не обоснована работоспособность конструкционных материалов в свинце при принятой температуре и при высоком облучении нейтронами расплавленный свинец вызывает сильную коррозию конструкционных материалов ; не изучено влияние облучения в реальных реакторных условиях на поведение в свинце тепловыделяющих элементов и топливной композиции; сама по себе проблема смешанного нитридного топлива требует значительных усилий и времени для её разрешения; технические решения по переработке топлива находятся на начальной стадии разработки. Вследствие наличия этих вопросов: По состоянию обоснования технических решений проект «Брест» — быстрый реактор со свинцовым теплоносителем — не подготовлен для стадии технического проектирования и не может быть выделен в настоящее время как единственный вариант долгосрочной стратегии развития ядерной энергетики России. Доллежаля» В. Орлова [19] , опубликованной в том же 2001 году на сайте НИКИЭТ, практически не содержится ответных доводов в технической части, напротив, подтверждаются слова академика Пономарёва-Степного о начальности стадии разработки проекта, неотработанности и неисследованности многих важных вопросов, однако содержатся нападки на личность критика: «статья Н. Пономарева-Степного не содержит каких-либо новых возражений против Стратегии или идей по её корректировке, которые не были бы обсуждены в ходе её выработки и принятия. Африкантова » В. Кроме того, при облучении свинцово-висмутового теплоносителя дополнительно образуется большое количество радиоактивного полония этот процесс характерен и для свинцового теплоносителя [21]. К этому следует добавить проблему накопления трития во втором пароводяном контуре этих реакторных установок ; большие энергетические и временные затраты для расплавления и поддержания теплоносителя в жидком состоянии на разогрев реактора в РУ БРЕСТ-ОД-300 по проекту потребуется 7 месяцев ; токсичность «тяжёлых» теплоносителей и образование долгоживущих изотопов альфа-активного свинца, альфа- и бета-активного висмута с периодом полураспада более 106 лет, что усугубляет проблему их утилизации после прекращения эксплуатации реактора. Также в этой статье высказываются сомнения вообще относительно возможности создания надёжных реакторных установок с «тяжёлым теплоносителем» с длительным сроком эксплуатации, ставится вопрос об экономической целесообразности создания таких установок, а также высказывается мнение, что: РУ с «тяжёлыми» теплоносителями не имеют новых качеств и в отношении возможности утилизации долгоживущих актинидов по сравнению с быстрыми реакторами, охлаждаемыми натрием.
Росатом продолжает строительство энергоблока для уникального реактора БРЕСТ-ОД-300
Реактор 'БРЕСТ-ОД-300' (установка с пристанционным ядерным топливным циклом) строится на площадке Сибирского химического комбината (СХК) в Северске в рамках проекта Росатома 'Прорыв' по созданию новейшего топлива, на котором атомная энергетика будет работать. Если один энергоблок с РУ БРЕСТ-ОД-300 способен нарушить мировой баланс по этому изотопу, то что будет, когда подобных реакторов станет много, а мощность каждого из них возрастет в 3—5 раз. На Сибирский химкомбинат доставили опытный образец главного циркуляционного насоса для реактора БРЕСТ-ОД-300. – БРЕСТ-ОД-300 будет первым в истории реактором, где применяется такое решение.
Росатом начал строительство уникального энергоблока с реактором на быстрых нейтронах БРЕСТ-ОД-300
Специалисты Белоярской АЭС в Свердловской области, которые проводят испытания для реактора БРЕСТ-300 в Северске Томской области, протестировали более 20 вариантов конструкций для загрузки топлива. Реактор 'БРЕСТ-ОД-300' (установка с пристанционным ядерным топливным циклом) строится на площадке Сибирского химического комбината (СХК) в Северске в рамках проекта Росатома 'Прорыв' по созданию новейшего топлива, на котором атомная энергетика будет работать. Ключевым элементом ОДЭК является первый в мире инновационный демонстрационный опытно-промышленный энергоблок на базе быстрого реактора на быстрых нейтронах с реакторной установкой БРЕСТ-ОД-300 со свинцовым теплоносителем. Специалисты НИУ «МЭИ» приняли участие в создании заготовки выходной части МГД-насоса для нового типа реактора на быстрых нейтронах БРЕСТ-ОД-300.
Читать также
- Началось строительство опытного реактора на быстрых нейтронах БРЕСТ
- Росатом изготовит уникальное оборудование для энергоблока с реактором БРЕСТ-ОД-300
- Атомные реакторы нового поколения
- 6-й реактор Белоярской АЭС - БРЕСТ ОД 300?: nucl0id — LiveJournal
Новейший энергоблок БРЕСТ: мир замер в восхищении от проекта "Росатома"
В ОДЭК также входят модуль по производству уран-плутониевого топлива и модуль по переработке отработавшего топлива. Из энергетического плутония с добавлением обедненного урана по технологии карботермического синтеза будут производиться новые порции свежего топлива. Фактически, это замыкание ЯТЦ на площадке атомной станции. Для агрегата использовали высоколегированные стали и керамические материалы, он весит более 30 т. Доставили насос на площадку в конце марта 2023 года. После монтажа его испытают на специальном стенде в колонке с расплавленным свинцом. Насос для БРЕСТа за секунду способен прокачать 11 т расплавленного свинца через первый контур реактора, что сравнимо с объемом кузова грузовика средних размеров, нагруженного свинцом. В течение этого года специалисты будут проверять напорно-расходные характеристики насоса. На базе полученных результатов с учетом возможных доработок будут изготовлены четыре серийных насосных агрегата.
БРЕСТ — не единственно возможная, но первая концепция, отвечающая совокупности требований крупномасштабной атомной энергетики по безопасности и экономике и направленная на решение задач устойчивого развития. ОДЭК, помимо реактора БРЕСТ, включает в себя комплекс по производству так называемого смешанного нитридного уран-плутониевого ядерного топлива для реактора, а также комплекс по переработке отработавшего топлива. В результате получится пристанционный замкнутый ядерный топливный цикл, что даст возможность на одной площадке не только вырабатывать электричество, но и готовить из топлива, выгружаемого из реактора, новое. Новый атомный "энергокомплекс будущего" строится там, где в конце 1950-х годов заработала первая отечественная промышленная атомная электростанция Сибирская АЭС — она начиналась с реактора ЭИ-2, сконструированного под руководством академика Николая Доллежаля. БРЕСТ — прототип реактора на быстрых нейтронах БР-1200 также со свинцовым теплоносителем, который, в свою очередь, станет основой коммерческого энергоблока большой электрической мощности порядка 1200 МВт. Четвертое поколение В нынешнем веке Россия первой построила и ввела в эксплуатацию атомные энергоблоки с реакторами так называемого поколения "три плюс", а сейчас речь идет об освоении технологий установок четвертого поколения. Но дело не только в цифровом обозначении — с четвертым поколением ядерных энерготехнологий термин "реактор" заменяется более корректным словом "система", что включает в себя как непосредственно сам реактор, так и переработку рециклирование его ядерного топлива. Согласно новым требованиям мирового атомного сообщества такие системы должны обладать более высокими эксплуатационными показателями, чем предыдущие поколения, в области обеспечения устойчивого развития, конкурентоспособности с другими видами генерации, безопасности и надежности, а также защиты от распространения, оправдывая использование в их отношении выражения "технологический прорыв". Сейчас развитие атомной энергетики в мире во многом еще сдерживается боязнью аварий, связанных с выбросами радиоактивных веществ.
Как будет работать новая установка и за что критикуют революционный проект? Комплекс под Томском — экспериментальный. Если проект докажет свою работоспособность, реакторы по принципиально новой технологии начнут строить по всему миру. Разработчики реактора прочат своему детищу революцию в энергетике. Но критиков тоже хватает. Разрешить их спор сможет только реальная эксплуатация установки. Первые в мире Проект только-только оторвался от бумажной стадии — на днях в Северске началась заливка первого бетона в фундамент. Опытно-демонстрационный энергоблок, разработанный специалистами Научно-исследовательского и конструкторского института энерготехники имени Доллежаля, построят на площадке Сибирского химического комбината. Все работы ведутся в рамках многолетнего проекта «Прорыв», который предусматривает создание ядерных энергетических технологий нового поколения и курируется руководством страны. Революционным является не только сам реактор на быстрых нейтронах — в состав кластера также войдут модуль по производству уран-плутониевого ядерного топлива и установка по переработке облученного топлива. При этом для будущих поколений снимается проблема накопления отработавшего ядерного топлива», — сказал на церемонии старта работ генеральный директор «Росатома» Алексей Лихачев.
В НЦК отметили, что оросительное устройство — это основной элемент градирни, отвечающий за её охлаждающую способность. А водоуловительное устройство позволяет до минимума сократить воздействие работающей градирни на окружающую среду. Преимущество таких реакторов — способность эффективно использовать для производства энергии вторичные продукты топливного цикла в частности, плутоний.
В Томской области начали строить уникальный реактор БРЕСТ-300
Технические трудности и экономические затраты создания полномасштабной энергетики на быстрых нейтронах привели к отставанию их развития от реакторов с тепловым спектром нейтронов. В проекте БРЕСТ его разработчиками планируется создание демонстрационного топливного цикла, который должен продемонстрировать работоспособность, выявить проблемы масштабирования и обосновать экономику замкнутого цикла ядерного топлива. В связи с этим в программе предусмотрена разработка проектов реакторов на быстрых нейтронах со свинцовым, натриевым и свинцово-висмутовым теплоносителем [11] , что является одной из причин осуществления проекта БРЕСТ. Кроме него, в программе участвуют и другие инновационные проекты: серия реакторов с натриевым теплоносителем типа БН-800 и проект реакторов со свинцово-висмутовым теплоносителем СВБР.
Орловым и Е. Под этим понятием подразумевается ядерная и радиационная безопасность за счёт последовательного отказа от любых технических решений, потенциально опасных проектными и запроектными авариями, и организации безопасности за счёт использования природных законов и свойств используемых материалов, что позволит достичь убедительно прогнозируемой безопасности. Другими словами, в проекте БРЕСТ предполагается, что сам реактор и его топливо будут настолько безопасными, что не потребуют большого количества громоздких технических средств, систем и автоматики для обеспечения безопасности, что повлечёт упрощение устройства и удешевление АЭС [1] [13] [14].
Вышеуказанное понятие не является нововведением для ядерной энергетики и широко используется уже несколько десятилетий, имея в нормативной технической документации название «внутренняя самозащищённость» [15]. На свойстве внутренней самозащищённости в немалой степени основана безопасность практически всех современных реакторов, наиболее показательным его примером могут служить их отрицательные температурные, мощностные и другие эффекты реактивности — обратные нейтронно-физические связи реакторов, на которых основана устойчивость реакторов. Таким образом, концепцию «естественной безопасности» нужно рассматривать не в качестве оригинальной идеи, а в развитии устойчивого направления в конструировании ядерных реакторов, возможно качественного прорыва в этом направлении, по крайней мере, по утверждениям его создателей.
Особенности конструкции[ править править код ] Реактор является установкой бассейнового типа, в шахту из теплоизоляционного бетона изнутри покрытого металлическим лайнером залит свинец теплоноситель , в который опущены активная зона , парогенератор , насосы и другие системы. Циркуляция свинца в контуре осуществляется за счёт создаваемой насосами разности его горячего и холодного уровней. К особенностям реактора следует также отнести конструкцию твэлов.
Если традиционно выравнивание тепловыделения по радиусу реактора достигается за счёт изменения обогащения урана в твэлах, то в реакторе с полным воспроизводством плутония в активной зоне выгодно применять твэлы различного диаметра 9,1 мм , 9,6 мм, 10,4мм.
В НЦК отметили, что оросительное устройство — это основной элемент градирни, отвечающий за её охлаждающую способность. А водоуловительное устройство позволяет до минимума сократить воздействие работающей градирни на окружающую среду. Преимущество таких реакторов — способность эффективно использовать для производства энергии вторичные продукты топливного цикла в частности, плутоний.
Северск объединяет четыре завода по обращению с ядерными материалами. Одно из основных направлений работы СХК — обеспечение потребностей атомных электростанций в уране для ядерного топлива. В этом году компания отмечает свой юбилей — 25 лет.
Созданная в 1996 году, сегодня компания является одним из крупнейших поставщиков топлива для мировой атомной энергетики, продолжает укреплять позиции, воплощая новые производственные проекты. За всю историю ТВЭЛ со стороны заказчиков не было ни одной рекламации на качество продукции. Являясь единственным поставщиком ядерного топлива для российских АЭС, ТВЭЛ обеспечивает топливом в общей сложности 75 энергетических реакторов в 15 государствах, исследовательские реакторы в девяти странах мира, а также транспортные реакторы российского атомного флота.
Они обеспечивают прокачку теплоносителя через активную зону ядерного реактора с целью отвода тепла от нее. К циркуляционным насосам, работающим в такой агрессивной коррозионно-активной высокотемпературной среде, предъявляются повышенные требования, что и обусловливает их уникальность.
В процессе создания насосного агрегата был решен ряд исследовательских и экспериментальных задач по отработке конструкторских решений. Были созданы и применены новые специальные высоколегированные стали и керамические материалы. В ситуации, когда руководство страны ставит задачу по импортозамещению, создание этой установки решает вопрос о технологическом прорыве в атомной энергетике", - заявил генеральный директор ЦКБМ Игорь Бурцев, слова которого приведены в сообщении.
Проект «Прорыв»
В ОДЭК также входят модуль по производству уран-плутониевого топлива и модуль по переработке отработавшего топлива. Из энергетического плутония с добавлением обедненного урана по технологии карботермического синтеза будут производиться новые порции свежего топлива. Фактически, это замыкание ЯТЦ на площадке атомной станции. Для агрегата использовали высоколегированные стали и керамические материалы, он весит более 30 т. Доставили насос на площадку в конце марта 2023 года. После монтажа его испытают на специальном стенде в колонке с расплавленным свинцом. Насос для БРЕСТа за секунду способен прокачать 11 т расплавленного свинца через первый контур реактора, что сравнимо с объемом кузова грузовика средних размеров, нагруженного свинцом. В течение этого года специалисты будут проверять напорно-расходные характеристики насоса. На базе полученных результатов с учетом возможных доработок будут изготовлены четыре серийных насосных агрегата.
ОДЭК представляет собой кластер перспективных ядерных технологий и включает три взаимосвязанных объекта: энергоблок БРЕСТ-ОД-300, модуль по производству уран-плутониевого ядерного топлива и модуль по переработке облученного топлива.
Таким образом, впервые в мире на одной площадке будут построены АЭС с "быстрым" реактором и пристанционный замкнутый ядерный топливный цикл. Облученное топливо после переработки будет направляться на повторное изготовление свежего топлива рефабрикацию. БРЕСТ - первая реализуемая на практике концепция, отвечающая совокупности требований крупномасштабной атомной энергетики по безопасности и экономике. Испытания опытного образца ГЦНА на стенде планируется завершить до конца 2023 года.
Эта технология особенно востребована при создании сложной геометрии и эксплуатационных условий полой выходной части МГД-насоса. Свинец химически активен при высокой температуре, поэтому режим ЭЛНП тщательно настроен для получения изделия с высокой прочностью, минимальным количеством дефектов и стойкостью к коррозии.
Лицензию на строительство первого в мире опытно-демонстрационного энергоблока с реактором на быстрых нейтронах со свинцовым теплоносителем получил Сибирский химический комбинат. Нашли в тексте ошибку?