Для планеты черная дыра в этом случае может выступать в роли холодного светила. Почему в случае невращающейся черной дыры (рис. 8.4) кажется, что вторичные изображения звезд возникают из-за тени черной дыры, огибают ее и возвращаются обратно к тени, а не циркулируют вдоль замкнутых кривых, как в случае Гаргантюа (рис. 8.5)?
Ключевые слова
- Фильм «Интерстеллар» секрет концовки раскрыли спустя 9 лет |
- Око Саурона или пончик? В интернете обсуждают фото чёрной дыры — Wylsacom
- Сколько же лететь до ближайшей звезды?
- Новости ВсЁ Наука - Ученые: Использовать черные дыры для космических п... -
- Сверхмассивная чёрная дыра — Википедия
- Новости черных дыр
Звезды могут поглощать черные дыры — нестандартная гипотеза
Согласно Научным Данным Она Образовалась Из Тёмной Звезды в Тёмные Века Во Времена Когда Не Было Времени и Если Залетит в Нашу Солнечную Систему Нас Ждут Бо. 1) Почему черная дыра Гаргантюа в фильме выглядит именно так? Сверхмассивная чёрная дыра или плохо сфотографированный глазированный пончик Krispy Kreme? Новости» Новости» Технологий " Изображение Межзвездной Черной дыры Гаргантюа оказалось не слишком Далеко от Реальности. 3-МИНУТНОЕ ЧТЕНИЕ. Гаргантюа — сверхмассивная вращающаяся чёрная дыра с аккреционным диском. Находится в 10 миллиардах световых лет от Земли. огромной чёрной дырой.
Линзирование быстровращающейся черной дыры – Гаргантюа
Гаргантюа: Гигант в малютке | Эти уравнения описывали траектории лучей света, исходящих из далекой звезды, проникающих через искривленные пространство и время Гаргантюа, достигающих камеры и учитывающих даже само движение камеры вокруг черной дыры. |
Черная дыра, Гаргантюа, темный Обои 3840x2160 4K Ultra HD | В заключение отметим, что система Гаргантюа — поистине впечатляющее открытие, и нетрудно понять, почему ученые решили назвать ее в честь вымышленной черной дыры в «Интерстеллар». С массивной звездой, меньшей звездой-компаньоном и двумя. |
Черные дыры. Kак умирают чёрные дыры? | Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. |
Гаргантюа черная дыра - 85 фото | Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше. |
Похожие статьи
- Гаргантюа интерстеллар [82 фото]
- Содержание
- Ученые: Использовать черные дыры для космических путешествий можно, но только осторожно
- Смотрите также
Око Саурона или пончик? В интернете обсуждают фото чёрной дыры
Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты. Помните, как черная дыра Гаргантюа искривляет лучи света, искажая вид звездного неба? Эти снимки неожиданным образом показали, что черная дыра-«гаргантюа» и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого «звездного мегаполиса». Кадр из фильма «Интерстеллар» (2014 г.) – черная дыра Гаргантюа Черные дыры поглощают космические объекты и излучают колоссальное количество энергии.
Обои: черная дыра, Гаргантюа, темный - 3840x2160
Гаргантюа черная дыра - фото и картинки: 57 штук | Узнайте о влиянии черной дыры Гаргантюа на время и пространство и как это можно соотнести с нашим миром. |
Самая важная вещь во вселенной. Снимок черной дыры стал научным прорывом? | 360° | По данным ЕКА, две черные дыры — Gaia BH1 и Gaia BH2 — являются ближайшими к Земле из всех обнаруженных до сих пор. |
Черная дыра Гаргантюа | Для установки двигающихся обоев «Черная дыра Gargantua» на рабочий стол windows 11/10 или более ранних версий воспользовавшись одной из программ. |
Фильм «Интерстеллар» секрет концовки раскрыли спустя 9 лет
Концепция таких объектов связана с современным взглядом на гравитацию, общей теорией относительности Эйнштейна, и представлением тяготения в ней через искривление пространства-времени. Это явление, предсказываемое общей теорией относительности Эйнштейна, никогда раньше не наблюдалось", - объясняет глава Научного совета EHT Хайно Фальке из университета Рэдбуд в Нидерландах. Именно она и позволила нам измерить гигантскую массу черной дыры в M87. Куда смотрел телескоп Чтобы исследовать окрестности сверхмассивных черных дыр они являются сравнительно маленькими астрономическими объектами в центрах каждой галактики, ученые направили сеть радиотелескопов на черную дыру в центре эллиптической галактики Messier 87 M87 в созвездии Девы, она находится на расстоянии 55 млн световых лет от Земли. По словам Хайно Фальке, ученые решили сосредоточиться на галактике M87, поскольку черная дыра в центре нашей Галактики двигается, а поле зрения телескопа ограниченно. Как отмечает сайт Европейской южной обсерватории, благодаря своей огромной массе и относительной близости к Земле черная дыра в центре галактики M87 является для земного наблюдателя одной из крупнейших по своим угловым размерам, что и сделало ее идеальной мишенью для EHT. Непрерывные наблюдения за черной дырой продолжались в течение 10 суток в апреле 2017 года. При этом астрофизикам сопутствовала удача: во всех точках Земли, где стоят телескопы, была ясная погода. Каждый из телескопов собрал по 500 ТБ информации.
Представим, что пространство, вместо того, чтобы быть плоским и пустым, всё ещё пустое, но уже искривлено - то есть, в гравитационном поле космоса существуют отклонения. Как будут выглядеть наши квантовые флуктуации? В частности, если мы позволим пространству искривляться из-за присутствия чёрной дыры, как они будут выглядеть снаружи и внутри горизонта событий? Но эти пары частиц и античастиц не являются реальными, а представляют собою лишь способ визуализации и подсчёта энергии, присущей пространству. Дело в том, что при искривлённом пространстве, как вы помните, существуют отклонения гравитационного поля. Мы используем флуктуации для помощи в визуализации энергии, присущей пустому пространство, но могут возникать флуктуации, начинающиеся снаружи горизонта событий, которые попадут внутрь горизонта, не успев ре - аннигилировать. Но нельзя украсть энергию у пустого пространства - что-то должно случиться, чтобы её сохранить. Поэтому каждый раз, когда виртуальная частица или античастица падает внутрь, настоящий фотон или их набор должен появиться для компенсации.
И этот реальный фотон, покидающий горизонт событий, и уносит энергию от чёрной дыры. Тот способ, который мы ранее использовали для визуализации процесса, когда одна из пары частиц падала, а другая - убегала, слишком наивен, чтобы быть полезным, поскольку уменьшению чёрных дыр способствуют не частицы или античастицы, а фотоны, соответствующие спектру чёрного тела. Я предпочитаю картинку получше, хотя она всё равно ещё довольно наивна. Представьте квантовые флуктуации, при которых каждый раз, когда у вас появляется пара частица - античастица, из которых одна падает внутрь, появляется ещё одна пара частица - античастица, у которой внутрь падает другая. Это всё ещё не идеальная аналогия потому что это всего лишь аналогия , но, по крайней мере горизонт событий в ней покидают фотоны, что соответствует предсказаниям излучения хокинга. Фактически - хотя вам придётся провести подсчёты квантовой теории поля в искривлённом пространстве - времени, чтобы это выяснить - излучение хокинга предсказывает, что спектр фотона будет соответствовать абсолютно чёрному телу с температурой, заданной: Что даст температуру меньше одного микрокельвина для чёрной дыры массой равной массе солнца, меньше одного пикокельвина для чёрной дыры в центре нашей галактики, и всего лишь несколько десятых от аттокельвина для самой крупной из известных чёрных дыр. Скорость уменьшения, которому соответствует это излучение, настолько мало, что чёрные дыры будут расти, даже если они будут поглощать один протон за промежуток времени, сравнимый с возрастом нашей вселенной - это будет продолжаться ещё примерно 1020 лет. После этого чёрные дыры массой с солнце, наконец, начнут терять из-за излучения хокинга в среднем больше энергии, чем поглощают, и полностью испарятся через 1067 лет, а самые крупные из них - через 10100 лет.
Это может сильно превышать возраст вселенной, но это и не вечность. А уменьшаться они будут благодаря излучению хокинга, испуская фотоны. В итоге: у пустого пространства есть энергия нулевого уровня, которая не равна нулю, а в искривлённом пространстве на горизонте событий чёрной дыры появляется низкоэнергетический спектр излучения абсолютно чёрного тела. Это излучение отнимает массу у чёрной дыры и слегка сжимает горизонт событий со временем. Тогда частица от одной пары и античастица от другой аннигилируют, создавая реальные фотоны, покидающие чёрную дыру, а другая виртуальная пара частиц падает в дыру и забирает её энергию или массу. Источник: Geektimes. Гаргантюа черная дыра. Вращающаяся черная дыра в космосе Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры.
Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название — сингулярность. Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Этот процесс искажения называется "увлечение инерциальных систем отсчёта" или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию. Космический корабль "Эндюранс" направляется к Гаргантюа - вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца. Она находится на расстоянии 10 миллиардов световых лет от Земли, и вокруг нее вращается несколько планет. Гаргантюа вращается с поразительной скоростью 99,8 процентов от скорости света. Аккреционный диск Гарагантюа содержит газ и пыль с температурой поверхности Солнца.
Диск снабжает планеты Гаргантюа светом и теплом. Сложный вид черной дыры в фильме связан с тем, что изображение аккреционного диска искривлено гравитационным линзированием. На изображении появляется две дуги: одна образуется над черной дырой, а другая под ней. Черные дыры кто открыл. Там, за горизонтом Черная дыра — это самоподдерживающееся гравитационное поле, сконцентрированное в сильно искривленной области пространства-времени изображение с сайта www. С некоторой долей образности можно сказать, что это самоподдерживающееся гравитационное поле, сконцентрированное в сильно искривленной области пространства-времени. Ее внешняя граница задается замкнутой поверхностью, горизонтом событий. Если звезда перед коллапсом не вращалась, эта поверхность оказывается правильной сферой, радиус которой совпадает с радиусом Шварцшильда.
Физический смысл горизонта очень нагляден. Световой сигнал, посланный с его внешней окрестности, может уйти на бесконечно далекую дистанцию. А вот сигналы, отправленные из внутренней области, не только не пересекут горизонта, но и неизбежно «провалятся» в сингулярность. Горизонт — это пространственная граница между событиями, которые могут стать известны земным и любым иным астрономам, и событиями, информация о которых ни при каком раскладе не выйдет наружу.
Возможны, однако, альтернативные объяснения этого феномена: скопления белых или коричневых карликов, нейтронных звёзд, чёрных дыр обычной массы [ источник не указан 818 дней ]. Измерение скорости вращения газа править В последнее время благодаря повышению разрешающей способности телескопов стало возможным наблюдать и измерять скорости движения отдельных объектов в непосредственной близости от центра галактик. Форда была обнаружена вращающаяся газовая структура в центре галактики M87 [14]. Несмотря на гигантскую массу центрального объекта, нельзя сказать с полной определённостью, что он является чёрной дырой, поскольку гравитационный радиус такой чёрной дыры составляет около 0,001 светового года [ источник не указан 856 дней ]. По другим данным, объект сфотографированный телескопом Event Horizon, является сверхмассивной чёрной дырой [15]. Измерение скорости микроволновых источников править В 1995 году группа под руководством Дж. Морана наблюдала точечные микроволновые источники, вращающиеся в непосредственной близости от центра галактики NGC 4258 [16]. Всего было обнаружено 17 компактных источников, расположенных в дискообразной структуре радиусом около 10 световых лет. Наблюдение траекторий отдельных звёзд править В 1993—1996 годах А. Экарт и Р. Генцель наблюдали движение отдельных звёзд в окрестностях центра нашей Галактики [17]. Наблюдения проводились в инфракрасных лучах, для которых слой космической пыли вблизи ядра галактики не является препятствием. В результате удалось точно измерить параметры движения 39 звёзд, находящихся на расстоянии от 0,13 до 1,3 светового года от центра галактики. Только в 1960 году Дж. Оорт и Г. В 1966 году Д. Даунс и А.
That black hole photo is mighty blurry. Давайте сделаем его более чётким. Чёрная дыра — это пончик. Did they find a BlackHole or the Eye of Sauron? Немного улучшил фото чёрной дыры, убрал шумы. Первое настоящее изображение черной дыры pic.
Сверхмассивная чёрная дыра "Гаргантюа"
Обои: черная дыра, Гаргантюа, темный - 3840x2160 | Сверхмассивная чёрная дыра или плохо сфотографированный глазированный пончик Krispy Kreme? |
Новости ВсЁ Наука - Ученые: Использовать черные дыры для космических п... - | это одно из самых загадочных явлений вселенной. Она представляет собой область космического пространства с крайне высокой плотностью и силой притяжения, из которой ничто, включая свет, не может выбраться. |
Победит ли кордицепс человечество? Правда и вымысел в фантастических фильмах и сериалах | Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше. |
Гаргантюа черная дыра | новости Украины, Мир - Черной дыры Гаргантюа обои скачать - обои для рабочего стола. |
Самая яркая галактика Вселенной оказалась "каннибалом", выяснили в НАСА | огромной чёрной дырой. |
Фильм «Интерстеллар» секрет концовки раскрыли спустя 9 лет
Узнайте о влиянии черной дыры Гаргантюа на время и пространство и как это можно соотнести с нашим миром. Фото: Ton 618 черная дыра. Астрофизики Event Horizon смогли зафиксировать тень черной дыры в галактике М87 — кольцо излучения и материи на краю горизонта событий.
Почему первое изображение черной дыры не похоже на то, что было в "Интерстеллар"
Названия нейтронной звезды и черной дыры, скорее всего, взяты из «Жизни Гаргантюа и Пантагрюэля», пентологии романов, написанных в XVI веке Франсуа Рабле и повествующих о приключениях двух гигантов: Гаргантюа и его сына Пантагрюэля. В заключение отметим, что система Гаргантюа — поистине впечатляющее открытие, и нетрудно понять, почему ученые решили назвать ее в честь вымышленной черной дыры в «Интерстеллар». С массивной звездой, меньшей звездой-компаньоном и двумя. К примеру, отмечают Торн и Оливер, наблюдения за виртуальной черной дырой раскрыли необычный эффект, который будет заметен только при приближении к Гаргантюа из Interstellar или его реальным “кузенам”.
Как установить?
- «Интерстеллар» с точки зрения науки | Кино | Мир фантастики и фэнтези
- Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков | Видео
- Осторожно, спойлеры!
- Путешествие среди чёрных дыр
Зачем ученым фото черной дыры? 10 фактов, которые помогут разобраться в сложном вопросе
Принцип формирования сверхмассивных черных дыр пока установить не удалось. Согласно одной версии, причиной такого коллапса служат слишком сжатые газовые облака, газ в которых предельно разряжен, а температура невероятно высока. Вторая версия — это приращение масс различных малых черных дыр, звезд и облаков к единому гравитационному центру. Наша галактика Сверхмассивная черная дыра в центре Млечного Пути не входит в разряд самых мощных. Дело в том, что сама галактика имеет спиралевидную структуру, что, в свою очередь, заставляет всех ее участников находиться в постоянном и достаточно быстром движении.
Таким образом, гравитационные силы, которые могли бы быть сосредоточены исключительно в квазаре, как бы рассеиваются, и от края к ядру увеличиваются равномерно. Несложно догадаться, что дела в эллиптических или, скажем, неправильных галактиках, обстоят противоположным образом. На «окраинах» пространство крайне разряженное, планеты и звезды практически не движутся. А вот в самом квазаре жизнь буквально бьет ключом.
Параметры квазара Млечного Пути Используя метод радиоинтерферометрии, исследователи смогли рассчитать массу сверхмассивной черной дыры, ее радиус и гравитационную силу. Как было отмечено выше, наш квазар тусклый, супермощным его назвать трудно, но даже сами астрономы не ожидали, что истинные результаты будут такими. Более того, по очевидным данным, эта черная дыра даже не поглощает материю, а объекты, которые находятся в ее окружении, не нагреваются. Также был подмечен интересный факт: квазар буквально утопает в газовых облаках, материя которых крайне разряжена.
Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие звездные скопления. Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус. Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей. Размеры сверхмассивной черной дыры немного превышают среднее расстояние от Земли до Солнца, а именно составляют 1,2 астрономические единицы.
Гравитационный радиус этого квазара в 10 раз меньше основного диаметра. При таких показателях, естественно, материя просто не сможет сингулировать до тех пор, пока непосредственно не пересечет горизонт событий. Парадоксальные факты Галактика Млечный Путь относится к разряду молодых и новых звездных скоплений.
Самым известным в массовой культуре изображением черной дыры стал Гаргантюа в фильме «Интерстеллар». И пользователи неоднократно заметили, что снимок и кадр из фильма частично сходятся. Но для кого-то первое изображение черной дыры — величайшее открытие, а для кого-то… Вообще, любители науки с интересом восприняли сообщение о первой фотографии черной дыры, хотя и успели друг с другом поспорить о том, что объект на самом деле нельзя сфотографировать.
Потом начались диванные баталии о том, что ученые получили фотографии аккреционного диска, а затемнение в центре и есть горизонт событий, откуда не исходит и не отражается свет. Но некоторых пользователей все равно не удалось убедить, что открытие важно. Зажгите свечку Сотрудник отдела релятивистской астрофизики Астрономического института имени Штернберга Константин Постнов объяснил «360», почему черная дыра, которая не позволяет свету выйти, все равно светится. Она не светится. Светится вещество вокруг нее. Свечка у вас есть, зажгите.
Почему горит? Потому что там идет химическая реакция и частички, которые там вылетают, они горячие. Чем горячее, тем белее свет. То же самое и там. Когда газ падает вокруг черной дыры, он из-за трения нагревается до высоких температур и светится, как любое раскаленное тело Константин Постнов. Астрофизик отметил, что светятся плазма и газ, которые нагреты до огромных температур в окрестностях черной дыры.
Постнов объяснил, что черная дыра — это очень глубокая «потенциальная яма», компактный объект с большой массой. Туда падает газ, нагревается до высоких температур и светится в разных диапазонах света.
Для сравнения: до черной дыры в центре Галактики от нас 25 800 световых лет.
Читайте также Если бы Земля превратилась в Черную дыру, что изменилось бы в динамике Солнечной системы? Точки над «I» В науке между фактом и почти фактом — огромная дистанция. На рубеже тысячелетий большинство астрономов были практически уверены, что черные дыры существуют, но лишь наступившее столетие стало временем решающих доказательств.
После открытия в 2008 году черной дыры в центре Галактики следующий успех пришел в 2015-м, когда были зарегистрированы гравитационные волны от слияния черных дыр. Алексей Старобинский: «В XXI веке возник новый способ изучения черных дыр — с помощью гравитационно-волновой астрономии. Прибор состоит из двух зеркал, расстояние между которыми с большой точностью измеряется с помощью лазера.
Гравитационные волны, испускаемые при слиянии черных дыр, изменяют геометрию пространства, а значит, и расстояние между зеркалами. То, что наблюдали исследователи, отлично описывается теорией: большинство событий — это слияние черных дыр в составе двойных систем. Мы видим, как две черные дыры вращаются вокруг друг друга по почти кеплеровской орбите, за исключением самой последней стадии перед слиянием, постепенно теряют энергию в виде гравитационных волн и в конце концов сливаются.
Новым для астрономов оказалось только то, что типичная масса таких черных дыр — около 30—50 солнечных, а не 10, как ожидалось. Предстоит еще подумать о том, откуда взялись такие массивные звезды. Все, что мы видим, происходит очень-очень далеко.
Ни в нашей Галактике, ни даже в Туманности Андромеды ни одного такого события наблюдать не удалось. Речь идет о расстояниях от 100 до 1000 мегапарсек, тогда как до ближайшего сверхскопления галактик в созвездии Девы от нашей «местной группы» всего 10 мегапарсек». Регистрация гравитационных волн была отмечена особой нобелевской премией в 2017-м.
Наконец, в 2019 году достигнут последний потрясающий успех. Астрономы объединили в единую сеть восемь радиотелескопов, разбросанных по разным континентам. Будь эта система оптическим телескопом, она позволила бы из Москвы читать газету, раскрытую во Владивостоке.
С помощью такого инструмента исследователи заглянули в сердцевину галактики М87. Изображение было настолько подробным, что впервые позволило разглядеть не только яркий диск вещества, падающего на черную дыру, но и саму виновницу торжества в его центре. Говоря точнее, астрономы увидели так называемую тень черной дыры, которая образуется из-за воздействия ее гравитации на фотоны.
Если смотреть с Земли, их угловые размеры примерно одинаковы, и астрономы пытались разглядеть и запечатлеть оба эти объекта. Увы, наша родная черная дыра оказалось застенчивой, и получить ее изображение помешали облака пыли. А вот фото ее «сестры» из соседней галактики облетело научно-популярные СМИ.
Читайте также Можно ли уничтожить черную дыру? Парадоксы и перспективы Даже далекие от физики люди слышали, что существование черных дыр порождает парадоксы. При этом сам факт, что из-под гравитационного радиуса нет пути назад, не более парадоксален, чем банальные утверждения «человек смертен» или «прошлого не изменишь».
На самом деле, парадоксы возникают не в самой теории Эйнштейна, а на стыке этой теории и квантовой механики. Например, куда-то девается информация об угодивших в черную дыру материи и излучении, а квантовая механика такой потери не допускает. Алексей Старобинский реагирует на упоминание о парадоксах сдержанным смешком: «Если буквально, можно сказать, наивно применять аксиомы квантовой механики, то возможно прийти к выводу, что информация вроде бы должна сохраняться, а потому вокруг горизонта событий возникнет огненная стена — слой частиц с планковской то есть очень высокой энергией.
Однако ничего подобного при слиянии черных дыр мы не наблюдаем. Мы не видим ни высокоэнергетичных частиц, ни незатухающего сигнала гравитационных волн после момента слияния. Я специально спрашивал об этом тех, кто участвует в экспериментах.
А вот некоторые теоретики все это видят, поскольку берут чужие экспериментальные данные, но не чувствуют, какой колоссальной работы над погрешностями измерений требует правильная обработка этих данных. Я бы сказал, что парадоксы возникают, только если квантовую механику применять к тому, что происходит вокруг черной дыры, мягко говоря, немножко тупо». Может ли изучение черных дыр принести физике что-то еще, кроме очередного — с огромной точностью — подтверждения правоты Эйнштейна?
Старобинский надеется, что да: «Сейчас астрономия большей частью работает на себя, но кое-что от нее может перепасть и фундаментальной физике. Открытие черных дыр разнообразной массы — это похоже на описание все новых видов животных в биологии: все это остается в рамках фундаментальных представлений. Мы лишь подтверждаем ОТО в том, что касается гравитации, и Стандартную модель с точки зрения физики элементарных частиц.
Однако при этом астрономия четко говорит нам, что существует темная материя. Мы не знаем, из чего она составлена.
По словам Кипа Торна: «Часть из показанного в фильме — чистая правда, другая часть основана на научных предположениях, а еще часть — чистой воды спекуляция». Правда Поскольку действие космической части картины плотно связано с черными дырами, требовалось как-то визуализировать их на экране. Кип Торн взялся за эту задачу вместе со своими учениками, потом подключились мастера компьютерных спецэффектов, и результатом их работы стала восхитительная не только с кинематографической, но и с научной точки зрения черная дыра Гаргантюа. Черная дыра, как известно, поглощает свет и не отдает его. По идее, выглядит это не очень интересно, но хитроумный Торн с коллегами сообразил, что ее должны окружать притягиваемые газ и вещество разрушающихся звезд.
Всё это кружится вокруг дыры по сложной траектории, которую вполне можно просчитать. Что они и сделали. Шесть лет спустя астрофизики из проекта EHT получили первое изображение реальной черной дыры в центре нашей галактики. И вот сюрприз: она действительно похожа на визуализацию из «Интерстеллара». На планете Миллер герои сталкиваются с приливной волной высотой в километр, и это не художественное преувеличение. Дело в том, что планета вращается вокруг гигантской черной дыры Гаргантюа и испытывает на себе гравитационные эффекты от такого соседства. Мифы По сюжету путешественники для перемещения в другую галактику использовали червоточину или «кротовую нору» , один конец которой обнаружился в окрестностях Сатурна.
По сути, это такой скоростной тоннель между отдаленными точками пространства, который на данный момент существует только в виде математических расчетов. При этом сам Кип Торн считает, что самостоятельное зарождение их в пространстве и времени маловероятно, и в сценарии «Интерстеллара» прибегли к помощи некой сверхразвитой цивилизации из пятого измерения, которая и создала червоточину. Под конец путешествия главный герой падает в черную дыру, получает данные, необходимые ученым для спасения человечества, и передает их на Землю очень изощренным способом. По идее, уже у границы черной дыры Купер должен был превратиться в спагеттину из-за действия приливных сил, но, по словам Кипа Торна, для сверхмассивных черных дыр, вращающихся с огромной скоростью, удалось рассчитать более оптимистичные сценарии — «мягкую сингулярность». В этих условиях герой тоже, скорее всего, погибнет, но в научно-фантастическом фильме, даже очень строго выстроенном, имеет шанс выжить. Марсианин В не столь отдаленном будущем земляне отправляют на Марс экспедицию Ares III, которая должна выполнить некоторые задания по сбору научных данных. Ученые уже несколько дней работают на поверхности планеты, когда на лагерь надвигается жестокая песчаная буря.
Команда вынуждена срочно эвакуироваться, но во время посадки на взлетный модуль теряет биолога Марка Уотни. Сочтя коллегу погибшим, опечаленные астронавты покидают планету и отправляются домой. Раненый Марк остается один в чужих и абсолютно неподходящих для человека условиях. К счастью, он обладает природным оптимизмом и большими знаниями. Новоявленный Робинзон рассчитывает выжить и дождаться прибытия следующей экспедиции. Научно-фантастическая драма с элементами комедии «Марсианин» была поставлена по одноименному произведению Энди Вейера, программиста по образованию, который увлекается изучением физики, орбитальной механики и космонавтики. Его роман отличается дотошным описанием всех ухищрений, к которым пришлось прибегнуть герою для выживания в экстремальных условиях.
Соответственно, когда режиссер Ридли Скотт взялся за экранизацию, к съемочному процессу было привлечено много консультантов, в том числе из NASA. Фильм задумывался как гимн науке и блестяще выполнил эту миссию, даже несмотря на то что после премьеры собрал богатый урожай научной критики. Правда Чтобы обеспечить себя хотя бы скудным, но пропитанием, Марк решает посадить в марсианском грунте картофель, использовав в качестве удобрения человеческие экскременты. В 2015 году этот момент вызвал много критики, считалось, что грунт красной планеты слишком токсичен для растения. Но уже через два года исследователи из Международного центра картофеля в Перу сообщили об успешных экспериментах по выращиванию клубней в условиях, приближенных к марсианским. Селекционеры брали грунт из пустыни Пампа де ла Хойя, отличающийся повышенным содержанием солей. Гравитационный маневр, который предпринимают коллеги Марка Уотни, чтобы развернуться в сторону Марса и разогнаться, не придуман специально для этой истории.