Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта.
СУПЕРСИММЕ́ТРИ́Я
Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение.
На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц.
Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений.
Однако теория, за свою красоту многими воспринимаемая как истина в последней инстанции, все же осталась гипотезой, не подтвержденной прямыми экспериментами. Согласно ей, у каждой частицы существует "двойник". Его очень трудно обнаружить, но не быть его не может. Когда на умирающем "Теватроне" вдруг нашли намеки на существование, команда "Красотки LHC" решила это проверить. Эксперимент заключался в беспрецедентно детальном изучении распада Б-мезонов, возможном сегодня только на LHC.
Однако этот метод не позволяет точно определить, что излучение исходит именно от тёмной материи. Согласно научным представлениям, Вселенная состоит из элементарных частиц двух типов: переносчиков взаимодействий — бозонов — и «кирпичиков» материи — фермионов. Существует также теория суперсимметрии — гипотетическая симметрия, связывающая бозоны и фермионы. В данной теории, образно говоря, взаимодействие становится материей, а материя — взаимодействием. Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. Одна из таких гипотетических частиц — нейтралино, которая может являться вимпом. Этот эффект уже зарегистрирован для нейтрино, и, вероятно, вимпы будут рассеиваться таким же образом. Вероятность когерентного рассеяния выше, если частицы тёмной материи будут сталкиваться с тяжёлыми элементами, ядра которых содержат много протонов и нейтронов. Но по мере роста массы ядра снижается передача энергии такого взаимодействия, поэтому рассеяние будет сложно зарегистрировать. Поэтому нужен компромиссный вариант. Сейчас специалистам... Сегодня самые массивные и чувствительные в мире детекторы для поиска вимпов основаны на ксеноне или аргоне. Наша научная группа работает над детектором на основе аргона, поскольку у него выше энергия передачи от вимпов, чем у ксенона, а также такой детектор проще масштабируется до больших масс рабочего вещества. Предполагается, что частица тёмной материи при пролёте через вещество детектора с очень малой вероятностью провзаимодействует с атомным ядром и передаст ему часть энергии. Эту энергию мы сможем зарегистрировать, например, в виде светового излучения. В детекторе на основе аргона излучение идёт преимущественно в ультрафиолете, и для его регистрации необходимо использовать переизлучатели, сдвигающие спектр в видимую область. Но применение переизлучателей сопряжено с рядом технических сложностей: эти вещества могут растворяться в аргоне или отслаиваться от стенок детектора. Особенно актуальны эти проблемы станут при создании очень больших детекторов. Исследования, проведённые нашим коллективом, показывают, что возможно создание детекторов на основе аргона, которые будут работать без переизлучателей, хотя и с меньшей чувствительностью.
Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. В экспериментах на коллайдере ученые рассчитывают увидеть рождение суперсимметричных частиц, которые пока не были обнаружены ни в одном эксперименте. Члены коллаборации CMS пытались обнаружить «суперпартнеров» кварков и глюонов. Если бы эти частицы рождались в столкновениях протонов на коллайдере, они распадались бы на «обычные» кварки и глюоны, а также легкие стабильные частицы нейтралино, из которых, согласно, теории может состоять «темная материя». Кварки и глюоны, в свою очередь, создавали бы потоки джеты других частиц, а нейтралино, не взаимодействующие с обычной материей, «улетали» бы незамеченными. Детектор CMS мог бы видеть джеты, и ученые, обнаружив «недостачу» энергии, унесенной нейтралино, могли бы сделать вывод о рождении суперсимметричных частиц. Однако на данный момент число столкновений, которые бы удовлетворяли всем этим условиям, относительно невелико.
Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2
Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. Поскольку суперсимметрия является необходимым компонентом теории суперструн, любая обнаруженная суперсимметрия будет согласована с теорией суперструн. Теория суперсимметрии основывается на стандартной модели физики, которая включает гравитацию и объясняет существование темной материи и темной энергии. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ.
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии
С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на.
«Вселенная удваивается»
По данным команды "Теватрона" и еще нескольких других ускорительных лабораторий, на ход наблюдаемого ими распада Б-мезонов, возможно, влияло присутствие суперсимметричных частиц. Куда более чувствительный эксперимент, проведенный на суперколлайдере, этого влияния не обнаружил. Если учесть, что и на других детекторах LHC никакого следа суперсимметричных частиц до сих пор не встречалось, хотя по теории вероятностей это уже должно было произойти, это ставит крест на теории суперсимметрии в его сегодняшнем виде. Один из участников команды LHC профессор Джордан Нэш из Имперского Лондонского колледжа, комментируя результаты "Красотки LHC", заявил: "Это означает, что либо мы не полностью понимаем происходящее, либо суперчастицы неамножко другие, чем мы о них думаем, либо их нет вообще". Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь, но молодые физики уже начинают говорить о том, что пора придумывать что-нибудь еще, такое же красивое, но более реалистичное.
Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации.
Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна.
Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков.
Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее.
Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось.
Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц.
В понедельник участники пари встретились в Международной академии имени Нильса Бора.
Победителями были признаны скептики — ученые, не поверившие в обнаружение новых частиц. Расчеты обещают быть простыми благодаря равному числу победителей и проигравших — по 20.
Смысл первой иллюстрируется картиной, которая получается при отражении предмета в зеркале. Оно может быть либо тождественно самому предмету — например, отражение букв О или Ф, либо нет — например, отражение буквы И. В мире микрочастиц всё сложнее: там лучше говорить не о симметрии, а о чётности волновой функции, которая описывает физическую систему. Ясно, что в результате двукратного отражения ничего измениться не должно, но при каждом отражении эта функция, вообще говоря, может поменять знак на противоположный. Если этого не происходит, состояние называют чётным, в противном случае — нечётным.
Возможность того, что при слабых взаимодействиях пространственная «зеркальная» чётность может изменяться, была предсказана в 1956 году американскими физиками Ли Цзундао и Янг Чженьнин, а спустя год американский физик Ву Цзяньсюн экспериментально обнаружила, что такой эффект действительно имеет место: до взаимодействия состояние может быть чётным, а после него стать нечётным, и наоборот. Вскоре после этого советский физик Л. Ландау сформулировал гипотезу, согласно которой при любых взаимодействиях должна сохраняться комбинированная чётность — волновая функция не меняет знак при зеркальном отражении Р и одновременной замене частиц античастицами последнюю операцию называют зарядовым сопряжением и обозначают буквой С. Гипотезу назвали СР-инвариантностью. Долгое время её считали таким же незыблемым законом сохранения, как, скажем, закон сохранения энергии, которому подчиняются все процессы. Но в 1964 году был обнаружен редкий распад долгоживущего нейтрального К-мезона, свидетельствующий, что это не так. Сахаров сразу же отметил, что именно невыполнение СР-инвариантности на ранних стадиях образования горячей Вселенной могло привести к её барионной асимметрии — преобладанию вещества над антивеществом.
Тогда всё сущее, в том числе, конечно, и мы сами, порождено нарушенной симметрией. Оставалось, однако, непонятным, как нарушение СР-инвариантности «втиснуть» в рамки бытовавших в то время теоретических представлений. Дело в том, что тогда ещё только-только была предложена американцами М. Гелл-Маном и Дж. Цвейгом систематизация упоминавшегося выше «зоопарка» адронов, основанная на представлении, что они состоят из кварков трёх типов — u, d и s и соответствующих антикварков. Но нарушению СР-инвариантности там места не было. И тогда Кобаяши и Маскава обратили внимание на то обстоятельство, что несохранение СР-чётности можно описать весьма непринуждённо, если кроме упомянутых выше имеются как минимум ещё три кварка.
Говоря точнее, если в природе существует не менее трёх поколений кварков. Их догадка блестяще подтвердилась, теперь мы знаем, что три поколения — это пары ud -, cs - и tb -кварков, которые, однако, «смешиваются» друг с другом. Последний, тяжёлый t-кварк третьего поколения, «поймали» в Национальной ускорительной лаборатории им. Более того, выяснилось, что при распадах нейтральных B-мезонов СР-чётность нарушается намного сильнее, чем в аналогичных процессах с участием К-мезонов, о которых упоминалось выше. В заключение заметим, что во всей этой захватывающей физике микромира ещё далеко не всё понятно. По существу, пока мы не знаем самого главного: в чём причина нарушения симметрии в слабых взаимодействиях?
СУПЕРСИММЕТРИЯ
Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta. Супервремя — понятие, возникшее как «игрушечная модель» в суперсимметричной теории поля — одномерный слепок суперпространства. Лектор рассказывает о теории суперструн, голографических чёрных дырах, столкновениях параллельных вселенных и о других интересных явлениях. Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц.
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии
Суперсимметрия в свете данных LHC: что делать дальше? | Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. |
Теория суперструн популярным языком для чайников | Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. |
«Уродливая Вселенная: как поиски красоты заводят физиков в тупик» | Если рассмотреть квантовую электродинамику, то это теория с не очень большим, по сравнению с суперсимметрией, количеством симметрий. |
Купить книги в - Магазин научной книги | Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими. |
Нобелевская премия по физике 2008 года. Нобелевская асимметрия | Наука и жизнь | Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. |
«Вселенная удваивается»
Симметрия, суперсимметрия и супергравитация | активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики. |
Вселенная без Эйнштейна: почему физики больше не ищут теорию всего — Нож | Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации. |
Вселенная без Эйнштейна: почему физики больше не ищут теорию всего — Нож | Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на. |
Откройте свой Мир! | суперсимметрия. |
Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2
Супер ассиметричная модель вселенной попович | Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. |
Вы точно человек? | SIS’23 привлекло ведущих специалистов в квантовой теории поля и современной математической физики. |
СУПЕРСИММЕТРИЯ. Достучаться до небес [Научный взгляд на устройство Вселенной] | Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на. |
Суперсимметрия — Википедия | Напр., в теории С. происходит сокращение бесконечностей, которые присущи всем релятивистским теориям и представляют проблему, особенно в квантовой гравитации. |
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии | Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. |
Суперсимметрия и суперкоординаты
Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими. Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема. Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии.
Откройте свой Мир!
Суперсимметрия, возникшая независимо в теории струн, «убила» тахион. Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Когда суперсимметрия задана как местный симметрия, теория Эйнштейна общая теория относительности включается автоматически, и результат называется теорией супергравитация.
СУПЕРСИММЕТРИЯ
По популярным моделям, чтобы избежать обнаружения, частицам-суперпартнёрам приходиться быть сильно тяжелее своих двойников, и вместо симметрии появляется какое-то кривое зеркало. Физики выдвинули огромное количество идей о том, как симметрия может быть сломана, и породили тысячи версий суперсимметрии. Но нарушение суперсимметрии — это новая проблема. Большинство специалистов по физике частиц в 1980-х считали, что суперпартнёры будут лишь немного тяжелее известных частиц. Но на Теватроне, ускорителе в Fermilab, ныне отстранённом от работы, ничего подобного не нашли. И в то время, как БАК тестирует всё более высокие энергии, не находя и следа суперсимметричных частиц, некоторые физики утверждают, что теория мертва. В настоящее время большинство рабочих версий суперсимметрии предсказывают настолько тяжёлых суперпартнёров, что они бы пересилили эффекты от своих лёгких близнецов, если бы не точно настроенные взаимоуничтожения воздействий между различными суперпартнёрами. Но тонкая подстройка, предназначенная для нейтрализации проблем теории и решения проблемы иерархии, не нравится многим.
Некоторые теоретики ломятся дальше, и утверждают, что, несмотря на красоту изначальной теории, в природе может существовать уродливая комбинация частиц-суперпартнёров и капельки подстроек. В иных моделях суперпартнёры не тяжелее существующих частиц, но менее стабильны, из-за чего их труднее обнаружить. Эти теории будут и далее проверяться на БАК после апгрейда. Если ничего нового не найдут — а о таком развитии событий говорят, как о «кошмарном сценарии» — физикам останутся всё те же пробелы, что путали им всю картину Вселенной три десятка лет назад, до того, как их аккуратно закрыла суперсимметрия. И при отсутствии коллайдера более высоких энергий, говорит Фальковский, эта область будет медленно деградировать.
В этом смысле суперсимметрия стоит особняком. Где же эти частицы-суперпартнёры? Если бы суперссиметрия была точной симметрией природы, мы бы уже нашли множество суперпартнёров. Перед тем, как следовать далее, давайте вспомним, какие нам известны элементарные частицы. В статье по ссылке рис.
Имена у них довольно уродливые, сэлектрон и странный скварк, где «с» означает суперсимметрию. Вы можете спросить, почему их по две и почему для каждого нейтрино всего по одной. Обратитесь к рис. У фотона есть фотино, у глюонов — глюино, и т. С массивными W-бозонами всё чуть сложнее. К сожалению, в физике частиц с именованием частиц есть постоянная проблема — букв не хватает. У всех этих частиц точно такая же масса, в этом воображаемом суперсимметричном мире. Одна безмассовая, вторая массивная. Почему две? Оказывается, в суперсимметричном мире необходимо наличие двух частиц для того, чтобы у верхних и нижних кварков масса появлялась обычным способом.
Второй аргумент — два хиггсино необходимы для математической непротиворечивости. Но, очевидно, что этот идеально суперсимметричный мир — не наш. Мы бы уже более ста лет назад знали о существовании частиц, у которых был бы такой же электрический заряд и такая же масса, как у электронов, но при этом они бы электронами не являлись. Например, у нас были бы атомы с электронами, атомы с сэлектронами, и атомы с их смесью. Количество типов атомов было бы намного большим наблюдаемого, и поскольку бозоны в атомах вели бы себя совершенно не так, как фермионы, химия новых атомов была бы совершенно другой. Данные и повседневный опыт исключают эту возможность. Нет никаких сэлектронов с массой электронов, и точка. Так что точная суперсимметрия не является корректной теорией природы, и мы это знали ещё до того, как её задумывали. Конец суперсимметрии? Не так быстро.
Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации. В физике распространена идея о том, что симметрии могут быть спрятаны от нашего взора физики говорят, спонтанно нарушаться, но это не очень хороший интуитивный пример — симметрия есть, её просто сложно распознать.
О судьбе суперсимметрии трудно сейчас сказать что-то определенное.
Может быть, ее вообще нет в природе. Может быть, она будет открыта на новом суперколлайдере, который, возможно, построят в Китае. Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория.
У теоретиков есть еще чисто психологические моменты. Люди, которые никогда не изучали суперсимметрию, могут относится к ней скептически, но они же, изучив предмет, с трудом готовы поверить, что природа обходится без такой красоты. Конечно, на суперсимметрии или на теории струн свет клином не сошелся — ученые разрабатывают и другие подходы к физике за пределами Стандартной модели.
Но мне кажется, что в целом состояние отрасли, если иметь в виду теорию, довольно плачевное. С другой стороны, несмотря на все усилия, понимания того, как устроен мир на энергиях, превышающих типичные значения для Стандартной модели, у нас по-прежнему нет. Можно сравнить эту ситуацию с тем, как развивалась фундаментальная физика в 1950-е — 70-е годы: сначала вел эксперимент, все более мощные ускорители постоянно открывали большое число новых частиц, и совершенно непонятно было, как все это описывать и классифицировать.
Старые подходы не работали. В 1959 году, выступая на конференции по физике высоких энергий в Киеве, Лев Ландау объявил, что прежний, гамильтонов, подход к теории поля умер, и остается лишь организовать ему достойные похороны. Возникли новые методы, в которых было очень много красивой математики, но не так уж много физического содержания.
Но уже через десять лет в рамках старого, уже, казалось бы, похороненного подхода, появилась теория сильных взаимодействий, квантовая хромодинамика, и Стандартная модель, появились соответствующие предсказания, которые затем были блестяще подтверждены в новых экспериментах. Последнее из этих подтверждений — обнаружение хиггсовского бозона, это, так сказать, теоретический привет из шестидесятых. Само по себе это нормально, но вопрос о том, сменится ли эта фаза реальным прогрессом в понимании природы, остается, на мой взгляд, открытым.
Прошлые успехи не гарантируют успеха в будущем. Кроме того, сейчас имеется серьезная объективная трудность: в отличие от 1950-х годов, у нас сейчас не так много экспериментальных данных. Вот если бы БАК или другой ускоритель нашли бы "новую физику", тогда дело бы пошло веселей.
А так, в основном, мы имеем только косвенные подтверждения, что новая физика есть. По сути, мы сейчас идем за экспериментами — мы строим коллайдер, он, к счастью, находит бозон Хиггса, но не открывает микро-черные дыры или какие-то другие новые и интересные объекты, вроде суперпартнеров. Теоретики задыхаются от недостатка новых данных и у них, образно говоря, начинаются разнообразные сугубо математические галлюцинации… И это все при том, что острые нерешенные вопросы еще у нас есть.
Мне, теоретику, ситуация, в которой теория становится ведомой, совсем не по душе. Мне кажется, что вопрос "нужно ли идти дальше? Я верю в то, что тяга к фундаментальному знанию будет существовать до тех пор, пока существует человечество.
Последним в этой серии достижений стало открытие бозона Хиггса в 2012 году и последовавшее за ним присуждение Нобелевской премии по физике авторам хиггсовского механизма. Все эти годы Стандартная модель выдерживала тысячи экспериментальных проверок. Всевозможные тонкие и замысловатые эффекты, которые она предсказывала и которые удавалось сосчитать теоретически, неизменно подтверждались. С другой же стороны, физикам давно достоверно известно, что Стандартная модель не может быть окончательной теорией устройства микромира. Стандартная модель не способна объяснить наличие темной материи и доминирование вещества над антивеществом в нашей Вселенной. Она никак не объясняет разнообразные закономерности, которые обнаружены в свойствах кварков и особенно нейтрино. Наконец, многие численные величины в ней выглядят противоестественными, и сама Стандартная модель никакого объяснения им не дает. Физики уверены, что Стандартная модель — это лишь осколок какой-то другой, всеобъемлющей и более фундаментальной, теории устройства нашего мира, которую ученые условно называют физика за пределами Стандартной модели или «Новая физика». Что это за теория — пока неизвестно, но именно с ней связываются большие надежды на поиск ответов на неудобные для Стандартной модели вопросы. Чтобы не создавалось неправильного впечатления, надо обязательно оговориться, что проблема — не в том, чтобы придумать хоть какую-то теорию.
Таких теорий придуманы, наверное, сотни. Проблема в том, чтобы теория давала новые, нестандартные предсказания и чтобы эти предсказания подтверждались на опыте. А вот с этим пока сложности: ни один прямой эксперимент с элементарными частицами не обнаружил никакого достоверного отклонения от Стандартной модели. Так что Большой адронный коллайдер он же LHC — это не просто установка, которая сталкивает частицы и что-то там измеряет. Это тот инструмент, который должен помочь нам дотянуться до Новой физики, до нового пласта реальности, лежащего под Стандартной моделью. Первый маленький шаг в этом направлении сделан: открыт хиггсовский бозон и началось его изучение. Но это был подготовительный шаг, а настоящая задача коллайдера — достоверное обнаружение хоть какого-то отклонения от Стандартной модели — пока не решена. Как ищут проявления суперсимметрии Рис. Типичный подход к поиску суперсимметрии на Большом адронном коллайдере. Частицы-суперпартнеры рождаются в парах, но распадаются поодиночке, и после каскада распадов от них остаются стабильные и неуловимые легчайшие суперсимметричные частицы, например нейтралино.
Среди всех моделей особняком стоят теории, опирающиеся на суперсимметрию. Это слово обозначает глубокую, математически самосогласованную идею о том, что наш мир обладает симметрией нового типа, которая связывает между собой, говоря совсем условно, частицы материи и действующие между ними силы. Подробнее про суперсимметрию на доступном языке читайте и слушайте в материалах Дмитрия Казакова. Идея суперсимметрии проверяема в эксперименте, по крайней мере в принципе. Суперсимметричные теории предсказывают множество новых частиц, суперпартнеров обычных частиц. У кварков, глюонов, лептонов, гравитонов и всех других частиц есть суперпартнеры: скварки, глюино, слептоны, гравитино и т. Проблема только в том, что эти новые частицы — тяжелые, и никто не может заранее сказать, насколько.