Новости уран на что распадается

Можно увидеть разлет продуктов распада. Распад урана — это даже не атомный, а ядерный процесс. А ядро по размерам в 20 тысяч раз меньше атома и в 5 млн раз меньше длины волны видимого света. Так что наблюдать в оптике, как оно распадается, не получится.

Уран: факты и фактики

Ядерное топливо Новость про то, что Великобритания намерена передать Украине боеприпасы с обедненным ураном, всколыхнула умы общественности и политиков.
Дьявол в деталях: чем страшны урановые боеприпасы – ученый | Крымский федеральный университет Лента новостей.
Эффект просушки: что происходит с радиоактивной лавой под реактором в Чернобыле Да, уран-235 и 238, конечно, распадаются, но период полураспада у них огромен, а значит количество распадов в секунду будет минимальным.
уран – последние новости Гораздо страшнее продукты распада урана."Дело в том, что сам уран-238 имеет период полураспада около 4,5 млрд лет.

Справочник химика 21

Период полураспада урана различен: так для U-234 он составляет «всего» 270 тысяч лет, а период полураспада урана-238 превышает 4,5 миллиарда. Ю9) лет. Даже по геологической шкале времени распад урана происходит весьма медленно. Уран-235 образуется в результате следующих распадов. arXiv: ледяные гиганты Уран и Нептун на 10% состоят из метана.

Новый изотоп урана может сделать ядерную энергетику экологичной

Сколько урана будет распадаться в секунду при периоде полураспада в 700 миллионов лет? Как следует отсюда, о распаде ядра урана на две части не было еще и мысли. Воздействие урана на организм человека выявляется в его токсичности соединений. Смотрите видео онлайн «СВЕРШИЛОСЬ! В США самостоятельно СМОГЛИ ОБОГАТИТЬ УРАН» на канале «ГЕОЭНЕРГЕТИКА ИНФО» в хорошем качестве и бесплатно, опубликованное 26 апреля 2024 года в 15:37, длительностью 00:35:11, на видеохостинге RUTUBE. Изотоп урана U235 устроен таким образом, что однажды запущенная реакция ядерного распада будет протекать самопроизвольно, без дополнительного влияния извне. Поэтому уран добывают в основном как основу для извлечения из руды подобных изотопов. В статье рассматриваются такие аспекты, как период полураспада урана, радиоактивный распад, изотопы урана и их свойства, применение урана в атомной промышленности и энергетике.

Вторая жизнь урана: что делают в современном мире с отработанным ядерным топливом

Когда Бор закончил, физики побежали к телефонам, чтобы дать коллегам в лабораториях инструкции. Некоторые ученые решили сразу покинуть конференцию, чтобы самостоятельно проверить, правда ли уран способен делиться. В течение пары недель множество научных групп независимо друг от друга воспроизвели то, о чем говорил Бор. Часто говорят, что ученые тогда открыли превращение одних металлов в другие, чего пытались добиться тысячи лет. Правда, древние алхимики посмеялись бы над такой трансмутацией, поскольку она превращала редкий и дорогой уран в более дешевый и распространенный барий. Разве это была первая трансмутация? На самом деле, физики начали фиксировать нарушение постулата Лавуазье задолго до открытия деления ядра урана. В конце XIX века ученые обнаружили, что некоторые химические элементы в том числе уран и торий по своей внутренней природе испускают лучи, и это свойство назвали радиоактивностью. К 1900-м годам стало ясно, что радиоактивные элементы в действительности испускают три типа лучей: альфа, бета и гамма.

Как доказал Эрнест Резерфорд, бета-лучи — это электроны, а альфа-лучи — это ядра атомов гелия. Примерно так выглядел стол для исследования деления ядер Опыты показывали, что радиоактивные элементы почему-то со временем распадаются, будто бы протухают. Резерфорд и его ученик Фредерик Содди осознали, что при распаде одни химические элементы превращаются в другие, причем всегда по одному и тому же закону: при альфа-распаде вещество смещается на две позиции назад в таблице Менделеева, и атомная масса уменьшается на 4; при бета-распаде вещество смещается вперед на одну позицию, но атомная масса остается неизменной. Так, «выстреливая» альфа-частицей, уран превращается в торий, торий — в радий, радий — в радон, радон — в полоний, полоний — в свинец. Испуская бета-частицу, торий превращался проактиний, актиний в торий, а висмут — в полоний. Также оказалось, что химически идентичные атомы радиоактивных материалов могут распадаться с разной скоростью и иметь разную массу ядра — такие модификации химических элементов назвали изотопами. Периодическая система химических элементов С такими данными на руках нетрудно было понять, что все химические вещества в действительности имеют одну природу, а ядра их атомов состоят из одинаковых компонентов. Физики 1930-х годов пришли к выводу, что ядро любого атома напоминает жидкую каплю, состоящую из определенного количества протонов и нейтронов.

Красота Можно увидеть разлет продуктов распада Распад урана — это даже не атомный, а ядерный процесс. А ядро по размерам в 20 тысяч раз меньше атома и в 5 млн раз меньше длины волны видимого света. Так что наблюдать в оптике, как оно распадается, не получится.

Большинство существуют не более нескольких секунд, а некоторые намного меньше. Но, по крайней мере 4 образующихся изотопа являются долгоживущими. И они выделяют достаточно радиации, чтобы считаться опасными. В эту группу долгоживущих входят изотопы йода, стронция, цезия и углерода. Они существуют от нескольких недель до нескольких тысячелетий.

Период полураспада йода-131 составляет 8 дней. Цезий имеет полупериод распада 30 лет. Поэтому цезий опасен в перспективе.

Таким образом, деление урана на осколки равной массы с массовыми числами 115—119 происходит с меньшей вероятностью, чем асимметричное деление [5] , такая тенденция наблюдается у всех делящихся изотопов и не связана с какими-то индивидуальными свойствами ядер или частиц, а присуща самому механизму деления ядра. Однако асимметрия уменьшается при увеличении энергии возбуждения делящегося ядра, и при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра.

Деление ядер — лишь один из множества процессов, возможных при взаимодействии нейтронов с ядрами, именно он лежит в основе работы любого ядерного реактора [7]. Основная статья: Цепная ядерная реакция При распаде одного ядра 235U обычно испускается от 1 до 8 в среднем — 2,416 свободных нейтронов. Каждый нейтрон, образовавшийся при распаде ядра 235U, при условии взаимодействия с другим ядром 235U, может вызвать новый акт распада, это явление называется цепной реакцией деления ядра. С каждым последующим этапом реакции деления количество образующихся нейтронов может нарастать лавинообразно.

Справочник химика 21

Ядро атома состоит из нуклонов — нейтронов и положительно заряженных протонов. Существуют силы, которые связывают между собой нуклоны в ядре. Но его устойчивость зависит от того, сколько нуклонов оно содержит. Если ядро слишком тяжелое, то есть перегружено протонами или нейтронами, то оно будет менее устойчивым. Вам стало понятно — почему ядро распалось? Мне — нет.

Если оно перегружено, то почему в одном случае оно распадается через доли секунды, в другом через часы, а в третьем через годы. Почему ядерные, которые удерживали нуклоны вместе, вдруг так ослабли, что ядро распалось? Точнее силы не ослабли, а превратились в противоположные и растолкнули фрагменты ядра. В уране, с которым экспериментировал Резерфорд, все ядра с одинаковым числом нуклонов, но одно ядро распадается сейчас, это фиксирует счетчик, другое распадется завтра, а какое-то может распадется через тысячу или миллион лет. А потом распадаются не только слишком тяжелые ядра, но и легкие ядра.

Как видите половина ядер водорода распалось за 12,3 года, а когда остальные распадутся известно одному Богу. Получается, что устойчивость ядра не зависит прямо от его перегруженности. От чего же тогда зависит устойчивость атомного ядра? Естественно, что ответить на этот вопрос можно только в том случае, если нам известно устройство ядра. Для этого надо знать не только состав ядра, элементы, из которых оно состоит, но и физическую сущность сил, которые удерживают эти элементы в совокупности, как целый объект ядро.

Наука же знает только название силы — ядерная, но какая физическая сущность этой силы — это науке неизвестно. Не зная физической сущности этой силы невозможно даже сказать: ослабевают эти силы, превращаются в противоположные или исчезают вовсе. Не понимая этого нельзя ответить на вопрос: почему ядро распадается? Существует несколько теорий ядерных сил, но в них ядерные силы сводятся к другим каким-нибудь силам например, силы поверхностного натяжения и считается, что удовлетворительной теории ядерных сил пока нет. Но мне видится это не справедливым.

В 1935 году Х. Юкава опубликовал статью о « мезонной теории ядерных сил ». Юкава выдвинул гипотезу, что притяжение, удерживающее нуклоны внутри ядра, возникает благодаря наличию «квантов» некоего поля, аналогичных фотонам световым квантам электромагнитного поля и обеспечивающих взаимодействие электрических зарядов. Эта гипотеза не была принята за приоритетную, потому что никто не понимал, как это фотон может притягивать один нуклон к другому.

Обычно он появлялся там, где заканчивалась серебряная жила, за что получил прозвище "камень неприятности". В 1789 году Мартин Клапрот, германский химик, проанализировал образцы минералов из шахт и выделил то, что назвал "странным веществом с некоторыми свойствами металла". Это был диоксид урана. Он назвал новое вещество ураном в честь недавно открытой планеты, носившей такое же имя. Французский физик Анри Беккерель открыл радиоактивные свойства урана и радиоактивность как таковую в 1896 году. Он оставил уранилсульфат калия, разновидность соли, на фотографической пластинке в ящике и заметил, что уран оставил на ней такие же следы, какие могло оставить солнце.

Это означало, что от урана исходит излучение. Преображения урана подтвердили некоторые утверждения алхимиков Уран распадается и превращается в некоторые другие элементы, такие как радий, радон, полоний. Всего таких превращений у него может быть 14.

Связали это сотрудники с тем, что главный операционный директор хотел назначить "своих приближённых друзей на эти должности". Связан ли его уход по собственному желанию с резонансной открытой жалобой первым лицам государства на него или с чем-то еще — остается только догадываться. Необоснованные претензии Немногим ранее Bloomberg — в конце апреля—начале мая — множество западных и прозападных СМИ разразились критикой в адрес "Казатомпрома" и властей Казахстана. Причина их гнева заключалась в том, что благодаря публикации интегрированного годового отчета "Казатомпрома" они узнали о вхождении "Росатома" в состав акционеров Степногорского горно-химического комбината через "дочку" Uranium One, как и во всех остальных совместных уранодобывающих предприятиях в Казахстане, - Ред. Данные компании, избегавшие больших капитальных затрат на строительство скважин и обустройство родников за 2022-й год они составили менее 3 млрд тенге — наименьший уровень затрат среди всех совместных уранодобывающих предприятий в РК на одном из крупнейших месторождений, - Ред.

Российская компания, к слову, давно законтрактовала будущие добытые объемы урана с данных участков, что делает эту покупку еще более логичной. Какие претензии тут могут быть к любой из сторон данной сделки — непонятно. Работает на них "Росатом", правда, согласно казахстанскому законодательству — исключительно через совместные предприятия с "Казатомпромом". При этом ни на одном СП, работающем на Буденовском месторождении, "Росатом" не имеет контрольного пакета акций. На СП "Буденовское" он остается у "Казатомпрома", а значит ни о каком иностранном контроле над добычей казахстанского урана и речи идти не может. Практически на всех своих урановых месторождениях Казахстан работает через совместные предприятия с иностранными компаниями. Так, на казахстанских месторождениях работают СП с российской, канадской, французской, китайской, кыргызстанской и японскими компаниями. Почему именно текущее приобретение "Росатомом" доли в одном из таких совместных предприятий побудило прозападные СМИ будоражить и пугать казахстанскую общественность — вопрос открытый.

При текущей же схеме работы иностранные участники инвестируют, а контроль над месторождениями не теряется", - пояснил Борис Марцинкевич. Прозападные СМИ возмущенно пишут о том, что никаких заявлений от "Казатомпрома" о продаже комбината и доли в СП "Буденовское" вместе с ним "Росатому" в декабре не было.

Уран: факты и фактики А. Мотыляев Откуда взялся уран? Скорее всего, он появляется при взрывах сверхновых.

Дело в том, что для нуклеосинтеза элементов тяжелее железа должен существовать мощный поток нейтронов, который возникает как раз при взрыве сверхновой. Казалось бы, потом, при конденсации из образованного ею облака новых звездных систем, уран, собравшись в протопланетном облаке и будучи очень тяжелым, должен тонуть в глубинах планет. Но это не так. Уран — радиоактивный элемент, и при распаде он выделяет тепло. Расчет показывает, что если бы уран был равномерно распределен по всей толще планеты хотя бы с той же концентрацией, что и на поверхности, то он выделял бы слишком много тепла.

Более того, его поток по мере расходования урана должен ослабевать. Почему так получилось, не обсуждается. Где добывают уран? Урана на Земле не так уж мало — по распространенности он на 38-м месте. Всего в земной коре содержится 1014 тонн урана, но главная проблема в том, что он весьма рассеян и не образует мощных месторождений.

Промышленное значение имеют примерно 15 минералов урана. Это урановая смолка — ее основой служит оксид четырехвалентного урана, урановая слюдка — различные силикаты, фосфаты и более сложные соединения с ванадием или титаном на основе шестивалентного урана. Что такое лучи Беккереля? После открытия Вольфгангом Рентгеном Х-лучей французский физик Антуан-Анри Беккерель заинтересовался свечением солей урана, которое возникает под действием солнечного света. Он хотел понять, нет ли и тут Х-лучей.

Действительно, они присутствовали — соль засвечивала фотопластинку сквозь черную бумагу. В одном из опытов, однако, соль не стали освещать, а фотопластинка все равно потемнела. Когда же между солью и фотопластинкой положили металлический предмет, то под ним потемнение было меньше. Стало быть, новые лучи возникали отнюдь не из-за возбуждения урана светом и через металл частично не проходили. Их и назвали поначалу «лучами Беккереля».

Впоследствии было обнаружено, что это главным образом альфа-лучи с небольшой добавкой бета-лучей: дело в том, что основные изотопы урана при распаде выбрасывают альфа-частицу, а дочерние продукты испытывают и бета-распад. Насколько велика радиоактивность урана? У урана нет стабильных изотопов, все они радиоактивные. Самый долгоживущий — уран-238 с периодом полураспада 4,4 млрд. Следующим идет уран-235 — 0,7 млрд.

Оба они претерпевают альфа-распад и становятся соответствующими изотопами тория. Из- за его огромного периода полураспада радиоактивность этого элемента мала, а кроме того, альфа-частицы не способны преодолеть ороговевший слой кожи на поверхности человеческого тела. Рассказывают, что И. Курчатов после работы с ураном просто вытирал руки носовым платком и никакими болезнями, связанными с радиоактивностью, не страдал. Исследователи не раз обращались к статистике заболеваний рабочих урановых приисков и обрабатывающих комбинатов.

Вот, например, недавняя статья канадских и американских специалистов, которые проанализировали данные о здоровье более 17 тысяч рабочих прииска Эльдорадо в канадской провинции Саскачеван за 1950—1999 годы «Environmental Research», 2014, 130, 43—50, doi:10. Они исходили из того, что сильнее всего радиация действует на быстро размножающиеся клетки крови, приводя к соответствующим видам рака. Статистика же показала, что у рабочих прииска заболеваемость различными видами рака крови меньше, чем в среднем у канадцев. При этом основным источником радиации считается не сам по себе уран, а порождаемый им газообразный радон и продукты его распада, которые могут попасть в организм через легкие. Чем же вреден уран?

Он, подобно другим тяжелым металлам, весьма ядовит, может вызывать почечную и печеночную недостаточность. С другой стороны, уран, будучи рассеянным элементом, неизбежно присутствует в воде, почве и, концентрируясь в пищевой цепочке, попадает в организм человека. Разумно предположить, что в процессе эволюции живые существа научились обезвреживать уран в природных концентрациях. Но бывают и сильные отклонения. Исследователи же пытаются понять, не слишком ли строг норматив ВОЗ, изучая действие урана на животных.

К удивлению авторов — статья так и называется: «Неожиданное отсутствие заметного влияния урана на физиологические системы... Животные прекрасно питались, прибавляли в весе как следует, на болезни не жаловались и от рака не умирали. Уран, как ему и положено, откладывался прежде всего в почках и костях и в стократно меньшем количестве — в печени, причем его накопление ожидаемо зависело от содержания в воде. Однако ни к почечной недостаточности, ни даже к заметному появлению каких-либо молекулярных маркеров воспаления это не приводило. Авторы предложили начать пересмотр строгих нормативов ВОЗ.

Однако есть один нюанс: воздействие на мозг. В мозгах крыс урана было меньше, чем в печени, но его содержание не зависело от количества в воде. Это означает, что уран явно вызывал окислительный стресс в мозгу и организм на него реагировал. Такой эффект — сильное действие урана на мозг при отсутствии его накопления в нем, кстати, равно как и в половых органах, — замечали и раньше. Есть данные, что уран приводит и к нарушениям памяти у животных.

Изменение поведения коррелировало с уровнем окисления липидов в мозгу. Получается, что крысы от урановой водички делались здоровыми, но глуповатыми. Эти данные нам еще пригодятся при анализе так называемого синдрома Персидского залива Gulf War Syndrome. Загрязняет ли уран места разработки сланцевого газа?

Как применяют уран

  • Чем опасен обедненный уран
  • Эффект просушки: что происходит с радиоактивной лавой под реактором в Чернобыле
  • Продукты уранового распада: ученый объяснил механизм воздействия на организм
  • Химия и Жизнь - Уран: факты и фактики | Научно-популярный журнал «Химия и жизнь» 2014 №8
  • Как работают снаряды с урановым сердечником?
  • Цены на уран все выше

Что значит «обогатить уран»?

  • Это самый тяжелый элемент, естественным образом возникший во Вселенной
  • Ученые впервые с 1979 года открыли новый «богатый нейтронами» изотоп урана
  • Период - полураспад - уран
  • Ядерное топливо. Что же происходит с ним внутри реактора? | Пикабу

Урок 8: Деление ядер урана. Цепная реакция

  • Откройте свой Мир!
  • Справочник химика 21
  • Цены на уран все выше
  • Период - полураспад - уран - Большая Энциклопедия Нефти и Газа, статья, страница 1

Как добывается радиоактивный уран и для чего он используется?

Впитываясь в почву они поглощаются растениями, которые идут в пищу животным и людям. Очень стойкие соединения, со временем не разрушаются, циркулируют не только по пищевым цепям, но и с грунтовыми водами. Напомню - Украинские чернозёмы кормят треть мира экологически чистой продукцией.

Кривая зависимости относительного выхода изотопов, образующихся при облучении урана-235 медленными нейтронами, от массового числа — симметрична и по форме напоминает букву «M». Два выраженных максимума этой кривой соответствуют массовым числам 95 и 134, а минимум приходится на диапазон массовых чисел от 110 до 125. Таким образом, деление урана на осколки равной массы с массовыми числами 115—119 происходит с меньшей вероятностью, чем асимметричное деление [5] , такая тенденция наблюдается у всех делящихся изотопов и не связана с какими-то индивидуальными свойствами ядер или частиц, а присуща самому механизму деления ядра. Однако асимметрия уменьшается при увеличении энергии возбуждения делящегося ядра, и при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра. Деление ядер — лишь один из множества процессов, возможных при взаимодействии нейтронов с ядрами, именно он лежит в основе работы любого ядерного реактора [7]. Основная статья: Цепная ядерная реакция При распаде одного ядра 235U обычно испускается от 1 до 8 в среднем — 2,416 свободных нейтронов.

Сейчас большинство реакторов работают на медленных нейтронах. Обогащенный уран в виде металла, сплава, например с алюминием, или в виде оксида складывают в длинные цилиндры — тепловыделяющие элементы. Их определенным образом устанавливают в реакторе, а между ними вводят стержни из замедлителя, которые и управляют цепной реакцией. Со временем в тепловыделяющем элементе накапливаются реакторные яды — продукты деления урана, также способные к поглощению нейтронов. Когда концентрация урана-235 падает ниже критической, элемент выводят из эксплуатации. Однако в нем много осколков деления с сильной радиоактивностью, которая уменьшается годами, отчего элементы еще долго выделяют значительное количество тепла. Их выдерживают в охлаждающих бассейнах, а затем либо захоранивают, либо пытаются переработать — извлечь несгоревший уран-235, наработанный плутоний он шел на изготовление атомных бомб и другие изотопы, которым можно найти применение. Неиспользуемую часть отправляют в могильники. В так называемых реакторах на быстрых нейтронах, или реакторах-размножителях, вокруг элементов устанавливают отражатели из урана-238 или тория-232. Они замедляют и отправляют обратно в зону реакции слишком быстрые нейтроны. Замедленные же до резонансных скоростей нейтроны поглощают названные изотопы, превращаясь соответственно в плутоний-239 или уран-233, которые могут служить топливом для атомной станции. Так как быстрые нейтроны плохо реагируют с ураном-235, нужно значительно увеличивать его концентрацию, но это окупается более сильным потоком нейтронов. Несмотря на то что реакторы-размножители считаются будущим атомной энергетики, поскольку дают больше ядерного топлива, чем расходуют, — опыты показали: управлять ими трудно. Сейчас в мире остался лишь один такой реактор — на четвертом энергоблоке Белоярской АЭС. Как критикуют атомную энергетику? Если не говорить об авариях, то основным пунктом в рассуждениях противников атомной энергетики сегодня стало предложение добавить к расчету ее эффективности затраты по защите окружающей среды после выведения станции из эксплуатации и при работе с топливом. В обоих случаях возникают задачи надежного захоронения радиоактивных отходов, а это расходы, которые несет государство. Есть мнение, что если переложить их на себестоимость энергии, то ее экономическая привлекательность пропадет. Существует оппозиция и среди сторонников атомной энергетики. Ее представители указывают на уникальность урана-235, замены которому нет, потому что альтернативные делящиеся тепловыми нейтронами изотопы — плутоний-239 и уран-233 — из-за периода полураспада в тысячи лет в природе отсутствуют. А получают их как раз вследствие деления урана-235. Если он закончится, исчезнет прекрасный природный источник нейтронов для цепной ядерной реакции. В результате такой расточительности человечество лишится возможности в будущем вовлечь в энергетический цикл торий-232, запасы которого в несколько раз больше, чем урана. Теоретически для получения потока быстрых нейтронов с мегаэлектронвольтными энергиями можно использовать ускорители частиц. Однако если речь идет, например, о межпланетных полетах на атомном двигателе, то реализовать схему с громоздким ускорителем будет очень непросто. Исчерпание урана-235 ставит крест на таких проектах. Что такое оружейный уран? Это высокообогащенный уран-235. Его критическая масса — она соответствует размеру куска вещества, в котором самопроизвольно идет цепная реакция, — достаточно мала для того, чтобы изготовить боеприпас. Такой уран может служить для изготовления атомной бомбы, а также как взрыватель для термоядерной бомбы. Какие катастрофы связаны с применением урана? Энергия, запасенная в ядрах делящихся элементов, огромна. Вырвавшись из-под контроля по недосмотру или вследствие умысла, эта энергия способна натворить немало бед. Две самые чудовищные ядерные катастрофы случились 6 и 8 августа 1945 года, когда ВВС США сбросили атомные бомбы на Хиросиму и Нагасаки, в результате чего погибли и пострадали сотни тысяч мирных жителей. Катастрофы меньшего масштаба связаны с авариями на атомных станциях и предприятиях атомного цикла. Первая крупная авария случилась в1949 году в СССР на комбинате «Маяк» под Челябинском, где нарабатывали плутоний; жидкие радиоактивные отходы попали в речку Течу. В сентябре 1957 года на нем же произошел взрыв с выбросом большого количества радиоактивного вещества. Через одиннадцать дней сгорел британский реактор по наработке плутония в Уиндскейле, облако с продуктами взрыва рассеялось над Западной Европой. К наиболее масштабным последствиям привели аварии на Чернобыльской АЭС 1986 и АЭС в Фукусиме 2011 , когда воздействию радиации подверглись миллионы людей. Первая засорила обширные земли, выбросив в результате взрыва 8 тонн уранового топлива с продуктами распада, которые распространились по Европе. Вторая загрязнила и спустя три года после аварии продолжает загрязнять акваторию Тихого океана в районах рыбных промыслов. Ликвидация последствий этих аварий обошлась весьма дорого, и, если бы разложить эти затраты на стоимость электроэнергии, она бы существенно выросла. Отдельный вопрос — последствия для здоровья людей. Согласно официальной статистике, многим людям, пережившим бомбардировку или живущим на загрязненной территории, облучение пошло на пользу — у первых более высокая продолжительность жизни, у вторых меньше онкологических заболеваний, а некоторое увеличение смертности специалисты связывают с социальным стрессом. Количество же людей, погибших именно от последствий аварий или в результате их ликвидации, исчисляется сотнями человек. Противники атомных электростанций указывают, что аварии привели к нескольким миллионам преждевременных смертей на европейском континенте, просто они незаметны на статистическом фоне. Вывод земель из человеческого использования в зонах аварий приводит к интересному результату: они становятся своего рода заповедниками, где растет биоразнообразие. Правда, отдельные животные страдают от болезней, связанных с облучением. Вопрос, как быстро они приспособятся к повышенному фону, остается открытым. Есть также мнение, что последствием хронического облучения оказывается «отбор на дурака» см. В частности, применительно к людям это должно приводить к снижению умственных способностей у поколения, родившегося на загрязненных территориях вскоре после аварии. Это уран-238, оставшийся после выделения из него урана-235. Объемы отхода производства оружейного урана и тепловыделяющих элементов велики — в одних США скопилось 600 тысяч тонн гексафторида такого урана о проблемах с ним см. Эти отходы надо либо хранить до лучших времен, когда будут созданы реакторы на быстрых нейтронах и появится возможность переработки урана-238 в плутоний, либо как-то использовать. Применение ему нашли. Уран, как и другие переходные элементы, используют в качестве катализатора. Например, авторы статьи в «ACS Nano» от 30 июня 2014 года пишут, что катализатор из урана или тория с графеном для восстановления кислорода и перекиси водорода «имеет огромный потенциал для применения в энергетике».

По каким признакам его можно обнаружить? Один из методов поиска — анализ продуктов деления, мигрирующих из зоны реакции и достигающих земной поверхности. В частности, очень интересен изотопный состав «солнечного элемента» — гелия. Природный гелий состоит из двух стабильных изотопов: 4He и 3He. Гелий-4 попадает в атмосферу в результате естественного распада урана и тория. В воздухе на миллион атомов гелия-4 приходится всего полтора атома гелия-3. Но в базальтах срединно-океанических хребтов изотопа 3He больше уже в 8 раз, а в некоторых изверженных магматических горных породах — в 40! Как объяснить происхождение гелия с высоким содержанием изотопа 3He? Какие физические процессы могут быть ответственны за это? Обычный радиоактивный распад явно не годится, так как он продуцирует исключительно гелий-4. Попробуем привлечь на помощь ядерные реакции деления. Известно, что при работе реактора тяжелые ядра, поглощая нейтрон, становятся неустойчивыми и могут делиться на два крупных осколка с испусканием легких заряженных частиц и 2—3 нейтронов. В конечном продукте совокупности таких реакций доли обоих изотопов гелия хотя и отличаются, но представляют собой величины одного порядка. Напомним, что в «стандартном» атмосферном гелии их концентрации различаются на шесть порядков! Таким образом, относительно высокое содержание гелия-3, наблюдаемое в магматических породах, поднявшихся на поверхность из земных недр, может служить косвенным свидетельством работы глубинного геореактора. Уран выпал в осадок? Прежде чем продолжить разговор, хочется еще раз подчеркнуть принципиальное различие между естественным радиоактивным распадом и ядерной реакцией деления, ибо разница эта не всегда очевидна на неискушенный взгляд. Обычная радиоактивность — это самопроизвольный распад атомных ядер; для реакции деления обязательно требуется взаимодействие с внешней частицей нейтроном. По этой причине для осуществления ядерной реакции нужна достаточная концентрация активного вещества; для спонтанного распада концентрация не имеет никакого значения. Если в недрах Земли действительно идут цепные реакции, значит, там должны присутствовать скопления радиоактивных элементов актиноидов. Как и где именно они образовались? На этот счет существует множество разных точек зрения: от мантии до геометрического центра Земли. Анисичкин с соавторами предложили обоснованную гипотезу, согласно которой местом критической концентрации урана и тория могла быть поверхность твердого внутреннего ядра Земли. Эта концепция во многом базируется на работах по растворимости диоксида урана UO2 , проведенных в конце 1990-х гг. В экспериментах на аппарате высокого давления типа «разрезная сфера» А. Туркиным было показано, что растворимость UO2 в расплавах на основе железа с ростом давления уменьшается. Исследуемый диапазон давлений составлял 5—10 ГПа для сравнения: в центре Земли давление около 360 ГПа. Поскольку в природе уран встречается преимущественно в виде оксидов, то логично сделать вывод: чем глубже, тем хуже будет растворяться уран! Этот важный экспериментальный факт наводит на мысль, что миграция актиноидов в теле Земли могла быть следующей. После образования планеты в океане магмы, состоящей, в основном, из расплавов железа и силикатов, присутствовали и соединения урана. Со временем магма остывала, и происходило гравитационное разделение вещества по плотности. Силикаты, кристаллизуясь, всплывали в магме, плотность которой за счет железа была выше. Соединения же тяжелых актиноидов, выделяясь из расплава по мере роста давления и кристаллизуясь, оседали на внутреннее твердое железоникелевое ядро планеты. Из сейсмологических исследований известно, что переходная зона между внешним жидким и внутренним твердым ядром Земли толщиной 2—3 км имеет мозаичную структуру. При этом основными структурными элементами являются относительно тонкие взвешенные слои протяженностью до нескольких десятков километров. Возможно, именно они и являются областями концентрации тяжелых радиоактивных элементов. Не можешь найти — моделируй! Когда речь идет о процессах на глубинах в тысячи километров, следует иметь в виду, что, с одной стороны, они недоступны непосредственному экспериментальному исследованию, с другой — их не всегда возможно изучать и в лабораторных установках, где трудно создать аналогичные физические условия. Но в современной науке существует еще один универсальный инструмент познания — компьютерное моделирование. В 2005 г. Задача была не из легких, поскольку методы теории реакторов традиционно применяются для расчета процессов длительностью максимум в годы, а здесь потребовалось просчитывать интервалы в миллиарды лет! Согласно их идее при кристаллизации магматического океана происходило «гравитационное разделение вещества по плотности», в результате которого силикаты, кристаллизуясь, всплывали, а соединения тяжелых актиноидов оседали на внутреннее ядро планеты. В дальнейшем сконцентрировавшаяся таким образом масса актиноидов, и в первую очередь соединения урана, играла роль ядерного реактора, генерирующего энергию, обусловленную цепными реакциями деления. К сожалению, в самой основе этой занимательной гипотезы лежит недоразумение. Кристаллизация каких-либо соединений актиноидов в виде самостоятельных минеральных фаз, которые могли бы погружаться в недра планеты, в магматическом океане невозможна. Прежде всего, это обусловлено исключительно низкими концентрациями урана и других актиноидов в протопланетном веществе. При кристаллизации расплава, который возникает на основе такого вещества, весь уран распределяется в кристаллической решетке породообразующих минералов или на их границах в виде примеси, как и многие другие редкие и рассеянные элементы.

Уран: факты и фактики

Но он «живет» всего 40 минут, прежде чем распадается на другие элементы. Новый изотоп, уран-241, имеет 92 протона (как и все изотопы урана) и 149 нейтронов, что делает его первым новым богатым нейтронами изотопом урана, открытым с 1979 года. Гораздо страшнее продукты распада урана."Дело в том, что сам уран-238 имеет период полураспада около 4,5 млрд лет. Период полураспада урана-241, который образовался в результате взаимодействия урана-238 с платиной-198, составляет около 40 минут. Лента новостей. Распад Урана альбом Куньга слушать онлайн бесплатно на Яндекс Музыке в хорошем качестве. Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), является ядерным топливом для атомных электростанций и производства атомных бомб.

Физики создают новый изотоп урана

В результате столкновения образовалось большое количество фрагментов, в том числе 19 тяжелых изотопов, содержащих от 143 до 150 нейтронов. Каждый из них был измерен с помощью времяпролетной масс-спектрометрии, которая включает определение массы движущегося иона путем отслеживания времени, затраченного на прохождение заданного расстояния. Большинство образовавшихся в результате эксперимента изотопов никогда раньше не измерялись.

В настоящий момент еще нельзя сделать окончательных заключений о возможности или невозможности осуществления в уране ядерной реакции деления с бесконечно разветвляющимися цепями. Если такая реакция осуществима, то автоматически осуществляется регулировка скорости реакции, обеспечивающая спокойное ее протекание, несмотря на огромное количество находящейся в распоряжении экспериментатора энергии. Это обстоятельство исключительно благоприятно для энергетического использования реакции. Приведем поэтому — хотя это и является делением шкуры неубитого медведя — некоторые числа, характеризующие возможности энергетического использования урана. В случае медленных нейтронов стоимость "урановой" калории если исходить из вышеприведенных цифр будет, принимая во внимание, что распространенность изотопа U235 равна 0,007, уже лишь в 30 раз дешевле "угольной" калории при прочих равных условиях». Первую управляемую цепную реакцию провел в 1942 году Энрико Ферми в Чикагском университете, причем управляли реактором вручную — задвигая и выдвигая графитовые стержни при изменении потока нейтронов. Первая электростанция была построена в Обнинске в 1954 году.

Помимо выработки энергии первые реакторы работали еще и на производство оружейного плутония. Сейчас большинство реакторов работают на медленных нейтронах. Обогащенный уран в виде металла, сплава, например с алюминием, или в виде оксида складывают в длинные цилиндры — тепловыделяющие элементы. Их определенным образом устанавливают в реакторе, а между ними вводят стержни из замедлителя, которые и управляют цепной реакцией. Со временем в тепловыделяющем элементе накапливаются реакторные яды — продукты деления урана, также способные к поглощению нейтронов. Когда концентрация урана-235 падает ниже критической, элемент выводят из эксплуатации. Однако в нем много осколков деления с сильной радиоактивностью, которая уменьшается годами, отчего элементы еще долго выделяют значительное количество тепла. Их выдерживают в охлаждающих бассейнах, а затем либо захоранивают, либо пытаются переработать — извлечь несгоревший уран-235, наработанный плутоний он шел на изготовление атомных бомб и другие изотопы, которым можно найти применение. Неиспользуемую часть отправляют в могильники.

В так называемых реакторах на быстрых нейтронах, или реакторах-размножителях, вокруг элементов устанавливают отражатели из урана-238 или тория-232. Они замедляют и отправляют обратно в зону реакции слишком быстрые нейтроны. Замедленные же до резонансных скоростей нейтроны поглощают названные изотопы, превращаясь соответственно в плутоний-239 или уран-233, которые могут служить топливом для атомной станции. Так как быстрые нейтроны плохо реагируют с ураном-235, нужно значительно увеличивать его концентрацию, но это окупается более сильным потоком нейтронов. Несмотря на то что реакторы-размножители считаются будущим атомной энергетики, поскольку дают больше ядерного топлива, чем расходуют, — опыты показали: управлять ими трудно. Сейчас в мире остался лишь один такой реактор — на четвертом энергоблоке Белоярской АЭС. Как критикуют атомную энергетику? Если не говорить об авариях, то основным пунктом в рассуждениях противников атомной энергетики сегодня стало предложение добавить к расчету ее эффективности затраты по защите окружающей среды после выведения станции из эксплуатации и при работе с топливом. В обоих случаях возникают задачи надежного захоронения радиоактивных отходов, а это расходы, которые несет государство.

Есть мнение, что если переложить их на себестоимость энергии, то ее экономическая привлекательность пропадет. Существует оппозиция и среди сторонников атомной энергетики. Ее представители указывают на уникальность урана-235, замены которому нет, потому что альтернативные делящиеся тепловыми нейтронами изотопы — плутоний-239 и уран-233 — из-за периода полураспада в тысячи лет в природе отсутствуют. А получают их как раз вследствие деления урана-235. Если он закончится, исчезнет прекрасный природный источник нейтронов для цепной ядерной реакции. В результате такой расточительности человечество лишится возможности в будущем вовлечь в энергетический цикл торий-232, запасы которого в несколько раз больше, чем урана. Теоретически для получения потока быстрых нейтронов с мегаэлектронвольтными энергиями можно использовать ускорители частиц. Однако если речь идет, например, о межпланетных полетах на атомном двигателе, то реализовать схему с громоздким ускорителем будет очень непросто. Исчерпание урана-235 ставит крест на таких проектах.

Что такое оружейный уран? Это высокообогащенный уран-235. Его критическая масса — она соответствует размеру куска вещества, в котором самопроизвольно идет цепная реакция, — достаточно мала для того, чтобы изготовить боеприпас. Такой уран может служить для изготовления атомной бомбы, а также как взрыватель для термоядерной бомбы. Какие катастрофы связаны с применением урана? Энергия, запасенная в ядрах делящихся элементов, огромна. Вырвавшись из-под контроля по недосмотру или вследствие умысла, эта энергия способна натворить немало бед. Две самые чудовищные ядерные катастрофы случились 6 и 8 августа 1945 года, когда ВВС США сбросили атомные бомбы на Хиросиму и Нагасаки, в результате чего погибли и пострадали сотни тысяч мирных жителей. Катастрофы меньшего масштаба связаны с авариями на атомных станциях и предприятиях атомного цикла.

Первая крупная авария случилась в1949 году в СССР на комбинате «Маяк» под Челябинском, где нарабатывали плутоний; жидкие радиоактивные отходы попали в речку Течу. В сентябре 1957 года на нем же произошел взрыв с выбросом большого количества радиоактивного вещества. Через одиннадцать дней сгорел британский реактор по наработке плутония в Уиндскейле, облако с продуктами взрыва рассеялось над Западной Европой. К наиболее масштабным последствиям привели аварии на Чернобыльской АЭС 1986 и АЭС в Фукусиме 2011 , когда воздействию радиации подверглись миллионы людей. Первая засорила обширные земли, выбросив в результате взрыва 8 тонн уранового топлива с продуктами распада, которые распространились по Европе. Вторая загрязнила и спустя три года после аварии продолжает загрязнять акваторию Тихого океана в районах рыбных промыслов. Ликвидация последствий этих аварий обошлась весьма дорого, и, если бы разложить эти затраты на стоимость электроэнергии, она бы существенно выросла. Отдельный вопрос — последствия для здоровья людей. Согласно официальной статистике, многим людям, пережившим бомбардировку или живущим на загрязненной территории, облучение пошло на пользу — у первых более высокая продолжительность жизни, у вторых меньше онкологических заболеваний, а некоторое увеличение смертности специалисты связывают с социальным стрессом.

Количество же людей, погибших именно от последствий аварий или в результате их ликвидации, исчисляется сотнями человек. Противники атомных электростанций указывают, что аварии привели к нескольким миллионам преждевременных смертей на европейском континенте, просто они незаметны на статистическом фоне. Вывод земель из человеческого использования в зонах аварий приводит к интересному результату: они становятся своего рода заповедниками, где растет биоразнообразие. Правда, отдельные животные страдают от болезней, связанных с облучением. Вопрос, как быстро они приспособятся к повышенному фону, остается открытым.

В чистом виде он немного мягче стали, ковкий, гибкий, содержится в земной коре литосфере и в морской воде и в чистом виде практически не встречается.

Все эти изотопы урана радиоактивны. Рисунок 1. Уран - тяжёлый, серебристо-белый глянцеватый металл Обогащённый уран - это уран, который получают при помощи технологического процесса увеличения доли изотопа 235U в уране. В результате природный уран разделяют на обогащённый уран и обеднённый. После извлечения 235U и 234U из природного урана оставшийся материал уран-238 носит название «обеднённый уран», так как он обеднён 235-м изотопом. Обеднённый уран в два раза менее радиоактивен, чем природный, в основном за счёт удаления из него 234U.

Из-за того, что основное использование урана - производство энергии, обеднённый уран - малополезный продукт с низкой экономической ценностью. Важнейшее свойство урана состоит в том, что ядра некоторых его изотопов способны к делению при захвате нейтронов. В ядерной энергетике используют только обогащённый уран. Наибольшее применение имеет изотоп урана 235U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используют, как топливо в ядерных реакторах и в ядерном оружии. Выделение изотопа 235U из природного урана - сложная технология, осуществлять которую под силу не многим странам.

Обогащение урана позволяет производить атомное ядерное оружие - однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер с образованием более лёгких элементов. Уран-233, искусственно получаемый в реакторах из тория торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233 , может в будущем стать распространённым ядерным топливом для атомных электростанций уже сейчас существуют реакторы, использующие этот нуклид в качестве топлива, например KAMINI в Индии. Воздействие урана на организм человека выявляется в его токсичности соединений. Особенно опасны аэрозоли урана и его соединений. Уран, в том числе обедненный уран, как правило, представляет наибольшую опасность для здоровья человека в случае его попадания в организм при заглатывании, вдыхании или через трещины на коже длительный контакт может также привести к получению большой дозы внешнего облучения. В организме уран представляет угрозу, будучи одновременно токсическим тяжелым металлом и радиоактивным веществом.

При попадании в организм уран действует на все органы, являясь общеклеточным ядом.

Некоторые специалисты за это называют их «миниатюрными нейтронными бомбами». В промышленности его используют для защиты от других радиоактивных элементов и их вредных излучений.

Как обедненный уран стал оружием Благодаря высокой плотности металл добавляют в сплав для танковых снарядов и бронебойных пушек: они способны пробить броню толщиной до метра. Кроме того, изотоп добавляют и в саму танковую броню, чтобы укрепить её — например в американских Abrams. Танковые снаряды с урановым сердечником стоят на вооружении некоторых стран.

В числе прочих, их применяет и Великобритания для своих Challenger, 28 танков которой в мае были доставлены на Украину. И как на применение оружия с ядерным компонентом ответит Россия Последствия применения обедненного урана Металл повышает число онкологических и редких заболеваний как среди жителей пострадавших поселений, так и среди военнослужащих. Известен так называемый «балканский синдром», когда люди, находившиеся в зоне поражения изотопом, чаще других заболевали лейкемией.

Офицер югославской армии показывает место, где военные обнаружили стреляные пули с обедненным ураном в деревне Релина, примерно в 7 км от южного сербского города Прешево, 7 января 2001 года Фото: REUTERS Еще в 1999 году российские и югославские ученые подготовили доклады о возможных тяжелых последствиях применения снарядов, содержащих уран, а в директивах НАТО прямым текстом рекомендовалось «держаться подальше от танков, транспортных средств и зданий, поврежденных обычными или крылатыми ракетами с обедненным ураном». Считалось, что специалисты, занимающиеся исследованием разрушенных и поврежденных бронемашин, должны обязательно надевать «защитные маски и перчатки, чтобы урановая пыль не попала в организм».

Похожие новости:

Оцените статью
Добавить комментарий