Новости студариум клетка

Как правило, дочерние клетки — это клоны, полные копии клетки исходной. студариум @studarium в Инстаграме. Смотреть сторис, фото и видео анонимно без VPN. Такая форма клеток ранее никогда не встречалась, поэтому ей дали собственное название.

Студариум биология клетки - фото сборник

MHC) на поверхности антигенпредставляющих клеток. ТКР состоит из двух субъединиц, заякоренных в клеточной мембране, и ассоциирован с мультисубъединичным комплексом CD3. Определение набора хромосом растительных клеток, имеющих различное происхождение Для решения задач необходимо знать процессы, которые происходят с хромосомами при. Группа исследователей предполагает, что клетки обладают ранее неизвестной системой обработки информации, которая позволяет им принимать быстрые решения независимо от их. Прокариотические клетки присущи древним одноклеточным организмам. Древнейшие на Земле организмы, не имеющие клеточного ядра, появившиеся около четырех миллиардов лет тому.

Сандрин Тюре: Вы можете вырастить новые клетки головного мозга. И я расскажу, как

Исследовательская группа смогла продемонстрировать это, подавив экспрессию VGLUT клеток, отвечающих за заполнение нейронных везикул, специфичных для высвобождения глутамата гибридными клетками. Роберта де Кеглиа, ведущий автор исследования и старший научный сотрудник UNIL, поясняет: "Это клетки, которые модулируют активность нейронов: они контролируют уровень связи и возбуждения нейронов. А без этого функционального механизма, как показало исследование, долгосрочное потенцирование нейронный процесс, участвующий в механизмах памяти изменяется, и память мышей страдает". Последствия для нейронауки Более того, наличие глутаматергических астроцитов у человека подкрепляет идею об их важности. Это означает, что их роль не ограничивается феноменом, наблюдаемым у лабораторных животных, а может иметь прямое отношение к пониманию функционирования человеческого мозга. Это открытие может привести к появлению новых терапевтических подходов к лечению различных неврологических расстройств путем специфического воздействия на эти глутаматергические астроциты. Нейродегенеративные заболевания, такие как болезнь Альцгеймера, болезнь Паркинсона и боковой амиотрофический склероз болезнь Шарко , характеризуются прогрессирующей дегенерацией нейронов.

Если глутаматергические астроциты действительно участвуют в коммуникации между нейронами, то это означает, что они могут играть определенную роль и в этих заболеваниях. Дисфункция этих клеток может способствовать нарушению передачи глутамата, что, в свою очередь, может повлиять на здоровье и функционирование нейронов. Если целенаправленно воздействовать на глутаматергические астроциты, то можно модулировать эту передачу и, возможно, замедлить или обратить вспять прогрессирование некоторых нейродегенеративных заболеваний.

Нам еще многое предстоит узнать, и нейроны важны не только для объема памяти, но и для качества памяти. Они помогают памяти работать дольше, они могут помочь различить очень похожие воспоминания, например, отыскать велосипед, который вы оставляете на станции каждый день на одной и той же стоянке, но немного в разных местах. Моему коллеге Роберту наиболее интересным показалось наше исследование о взаимосвязи нейрогенеза и депрессии. При исследовании депрессии у животных мы увидели, что у нас более низкий уровень нейрогенеза. Если мы принимаем антидепрессанты, мы увеличиваем производство этих новорожденных нейронов и уменьшаем симптомы депрессии, тем самым устанавливая четкую связь между нейрогенезом и депрессией. Более того, если просто заблокировать нейрогенез, одновременно падает эффективность антидепрессантов. К тому моменту Роберт согласился, что его пациенты продолжают страдать от депрессии даже после избавления от рака из-за того, что препараты от рака препятствуют образованию новых нейронов. И нужно какое-то время на появление новых нейронов и восстановления их нормального функционирования. Итак, сообща мы пришли к выводу, что имеем достаточно оснований для того, чтобы направить наши усилия на нейрогенез, если мы хотим улучшить формирование памяти, настроение и даже предотвратить проблемы, связанные с возрастом или со стрессом. Поэтому следующий вопрос таков: можем ли мы управлять нейрогенезом? Ответ — да. Сейчас мы проведем маленький тест. Я представлю вам ряд действий и состояний, а вы скажете мне, уменьшают они или увеличивают нейрогенез. Обучение будет увеличивать производство новых нейронов. А как насчет стресса? Да, стресс уменьшает производство новых нейронов в гиппокампе. Безусловно, это снижает нейрогенез. Да, вы правы, он увеличивает производство новых нейронов. Однако все дело в балансе. Мы же не хотим попасть в ситуацию, когда слишком много секса приведет к недостатку сна. Темпы нейрогенза будут с возрастом сокращаться, но он все еще будет происходить. И последнее, как насчет бега? Предоставлю вам самим судить об этом. Это одно из первых исследований, проведенных одним из моих наставников, Расти Гейджем из Института Солка, показавшее, что окружающая среда может влиять на производство новых нейронов.

Анализ w-клеймированных маркеров, рассмотренных еще в начале деятельности HLDA, выявил их принадлежность к кластерам моноклональных антител, распознающих углеводные эпитопы, которые после надлежащей биохимической идентификации получили свой собственный «чистый» номер CD. Например, антиген Томсена-Фриденрайха TF или T открыт случайно при изучении групп крови обнаруживался на контаминированных эритроцитах. Структурно TF — это универсальная первичная коровая, кор-1 последовательность O-гликанов, то есть углеводный эпитоп. Присутствуя практически на всех мембранных гликопротеинах муцинового типа, он остается иммунологически замаскированным из-за удлинения углеводной цепи. Но в злокачественно трансформированных клетках происходит его демаскировка, вероятнее всего, в результате нарушения обрыва гликозилирования. TF характеризуется как онкофетальный углеводный эпитоп, имеет номер CD176. Прописные буквы после номера CD обозначают сплайсированный вариант внеклеточного домена молекулы клеточной поверхности. Например, в результате альтернативного сплайсинга гена Ptprc Protein tyrosine-phosphatase, receptor type , кодирующего трансмембранную тирозиновую протеинфосфатазу CD45, образуются варианты с различными характеристиками. Наивные Т-лимфоциты экспрессируют преимущественно высокомолекулярные изоформы СD45 CD45RA , имеют высокую фосфатазную активность и поддерживают Т-клеточный рецептор в премированном состоянии для распознавания антигена. Активированные Т-клетки экспрессируют короткий сплайс-вариант CD45 CD45RO , с которым связывают более быструю и эффективную активацию, опосредованную антигеном [14]. Сплайсинг — это процесс созревания молекул, в результате которого из предшественника удаляется внутренняя часть, а края образовавшегося дефекта лигируются за счет образования ковалентной связи. Сплайсингу подвергаются нуклеиновые кислоты и белки. Вырезание разных участков в транскриптах формирует альтернативный сплайсинг, в результате которого с одного гена считываются разные белки [15]. Строчная буква после номера CD обозначает несколько молекул, которые имеют общую цепь. В случае углеводных структур CD строчная буква указывает на модификацию углеводной последовательности. В некоторых случаях экспрессия уточняется количественно: «высокий» или «низкий» уровень. Поверхность цитоплазматической мембраны — важный участник всех видов клеточной коммуникации, фактически, она осуществляет ведение внешней политики клетки. Как настоящий дипломат студент МГИМО в случае наивных лимфоцитов, или опытный спец — клетка памяти , клеточная поверхность реагирует на потенциально опасные изменения окружающей среды, опосредует клеточную адгезию и коммуникацию между клетками как внутри иммунной системы, так и со стромой. В состав министерства внутренних дел входят рецепторы, транспортеры, каналы, белки адгезии клеток, ферменты. Согласно оценкам in silico, 2886 таких белков фактически экспрессируются на наружной клеточной мембране, то есть непосредственно на клеточной поверхности [17]. Экспериментальные данные представлены для 1492 белков разных тканей [18]. Ландшафт клеточной поверхности все еще загадочен. Заявленные внушительные цифры требуют тщательного анализа, уточнения и унификации информации.

И почему некоторые их потомки перестают быть СК и дифференцируются? Видимо, есть два основных механизма дифференцировки — асимметричное деление и разное микроокружение потомков рис. Например, нейробласты в ЦНС дрозофилы делятся асимметрично — одна клетка остается СК, а другая превращается в нейрон, и они различаются по размерам первый механизм. СК эпидермиса человека остаются таковыми, только если сохраняют контакт с межклеточным веществом базальной пластинки второй механизм. Рисунок 5. Основные механизмы дифференцировки СК. Значит, в потомках СК выключаются одни гены и включаются другие. Сейчас для многих линий СК эти белки и гены удалось идентифицировать. И это чрезвычайно важно. Поверхностные белки-маркеры позволяют выявить СК. А на гены можно попробовать повлиять, чтобы вызвать дифференцировку в нужном направлении. А нельзя ли обратить ее вспять? Оказалось, что можно! Достаточно включить в зрелой клетке даже не стволовой, а обычной — например, в фибробласте всего несколько генов — и она вновь станет вести себя, как стволовая. А в 2008 г. Включить для превращения клетки в ИПСК нужно всего 3—4 гена [12]. Их белковые продукты — факторы транскрипции. Они воздействуют на ДНК и меняют в клетке экспрессию сотен других генов. Например, активируется работа теломеразы — фермента, достраивающего концы хромосом и обеспечивающего способность клетки неограниченно долго делиться. А многие «взрослые» гены, активные в дифференцированных клетках, замолкают. Сначала эти 4 «гена-хозяина» ЭСК встраивали в геном с помощью ретровирусов. Но такая операция в некоторых случаях может превратить клетку в раковую. Затем удалось уменьшить их число, исключив наиболее опасный — протоонкоген c-Myc. Наконец, оказалось, что можно обойтись вектором на основе аденовируса; он не встраивает гены в хромосомы клетки, а только доставляет их внутрь. Достаточно, что образуются нужные белки — и потомки этой клетки, геном которых не изменен, «запоминают» свое состояние и остаются плюрипотентными. Возможно, скоро научатся получать ИПСК вообще без генетических манипуляций — только с помощью воздействия комбинаций ростовых факторов и других веществ. В 2009 году было доказано, что ИПСК могут давать полноценный организм, в том числе и клетки зародышевого пути. Кстати, при этом впервые были получены по-настоящему клонированные животные. Ведь при стандартной процедуре клонирования методом пересадки ядер митохондриальная ДНК передается потомству от яйцеклетки-реципиента, так что клон — не точная генетическая копия донора. Но получить ИПСК — это полдела. Хотелось бы еще заставить их дифференцироваться в нужном направлении — в культуре, а в перспективе в организме больного. И это тоже постепенно учатся делать. Недавно, например, из ЭСК удалось получить в культуре нейроны, вырабатывающие дофамин. Гибель таких нейронов в мозге вызывает болезнь Паркинсона. А что будет, если ввести ЭСК человека в организм бестимусной мыши с ослабленным иммунитетом? Как правило, они дают тератомы — опухоли, содержащие клетки всех трех зародышевых листков. Это стандартный тест на проверку плюрипотентности СК. Попав в непривычное окружение, ЭСК «не понимают», как им себя вести. В результате они обычно дают беспорядочно расположенные ткани, а иногда — целые органы, но там, где не надо... Нередко хлопоты доставляют и наши собственные СК. Видимо, они более склонны к злокачественному перерождению, чем остальные. Генеративные СК могут развиваться в тератомы. СК мозга часто дают начало глиобластомам и другим опухолям ЦНС. Все эти факты говорят о том, что СК, как толпу буйных детей, нужно постоянно держать под контролем — организм должен ограничивать деление СК и направлять в нужное русло их дифференцировку. И огромную роль в этом играет микроокружение СК — их «ниши». Этот заимствованный в экологии термин в применении к СК означает клетки и межклеточное вещество определенной ткани, которые окружают СК, контролируют их деление и дифференцировку. Расшифровка сигналов, получаемых СК от компонентов «ниши», позволит нам управлять стволовыми клетками. Как нейтрофилы спешат к месту воспаления, так и СК могут выходить из своих ниш мобилизация и спешить к месту повреждения, где надеются оказаться полезными хоуминг. К примеру, при инсульте в поврежденном участке мозга образуются сигнальные вещества, «зовущие на помощь» СК мозга, СК крови и МСК из костного мозга. Все эти клетки находят поврежденный участок, в котором идет воспаление, и пытаются его залечить: выделяют противовоспалительные вещества, стимулируют рост новых кровеносных сосудов, сливаются с выжившими нейронами и заменяют их ядра, дифференцируются в новые нейроны и клетки глии. Если нейральные СК или другие СК, коммитированные к развитию в нейроны ввести в желудочек мозга или даже просто в вену, они найдут пораженную инсультом область. У подопытных животных это уменьшает последствия инсульта. Вот уже десяток лет обсуждается вопрос о существовании особых СК злокачественных опухолей и особых ниш злокачественных СК. Многие факты говорят о том, что СК опухолей существуют. Возможно, именно они отвечают за образование метастазов. И возможно, что они возникают из обычных СК, если ниша за ними «не уследила». Более того — ниша может превращать «обычные» злокачественные клетки в злокачественные СК, позволяя им отрываться от опухоли и проникать в кровеносные сосуды. Само образование метастазов можно рассматривать как аналог мобилизации и хоуминга обычных СК. Существуют и данные о том, что первичная опухоль готовит ниши для своих будущих метастазов. Она выделяет вещества, вызывающие мобилизацию кроветворных СК; те выходят из костного мозга и проникают в определенные ткани, меняя их свойства и подготавливая к заселению опухолевыми СК. Если эти данные подтвердятся, они укажут множество новых путей для терапии онкологических заболеваний рис. Рисунок 6. Гипотеза о наличии раковых стволовых клеток пока окончательно не доказана, но их существование весьма вероятно. В таком случае для эффективной терапии необходимо выявить их особенности и направленно уничтожить. Одни служат у беспозвоночных для бесполого размножения, а другие — для создания разнообразия клеток. В это можно поверить, вспомнив клеточные линии гидры. Но в целом эта гипотеза вряд ли оправдана: всё, что мы знаем о происхождении и эволюции животных, убеждает в изначальной способности их клеток к взаимным превращениям [14]. Еще недавно нам казалось, что между разными тканями и тем более зародышевыми листками высших животных существуют четкие границы. Но сейчас от этих представлений приходится отказаться. Даже в теле взрослого человека эти границы постоянно нарушаются. СК одних тканей могут менять свою судьбу и входить в состав совсем других тканей и органов. Так что в этом отношении мы не так сильно отличаемся от губок. Образно говоря, сто миллиардов воротничковых жгутиконосцев, из которых состоит наше тело, до сих пор не утратили способность превращаться в амеб и обратно. Использование СК: надежды и опасения Часто обсуждают возникающие при использовании ЭСК человека морально-этические проблемы рис. Следует ли считать эмбрион, лишенный нервной системы, человеком со всеми его правами? Это — вопрос спорный, его можно обсуждать. Но в данном случае копья, похоже, ломаются зря. Рисунок 7. Извлечение одного бластомера восьмиклеточного зародыша человека — рутинная процедура при экстракорпоральном оплодотворении ЭКО [15] ; она необходима для диагностики генетических заболеваний. С помощью той же процедуры можно получать ЭСК. При ЭКО остаются также неиспользованные для имплантации зародыши. Поэтому опасения, что для получения ЭСК будут специально создаваться «плантации человеческих эмбрионов», беспочвенны — в этом нет необходимости.

ПОДПИСАТЬСЯ НА РАССЫЛКУ

  • Значение и функции митоза
  • студариум биология егэ 2023 год | Дзен
  • Ученые изолировали клетки — источник регенерации
  • Подписка на дайджест
  • CD-ландшафт клеток

T-лимфоциты и их циркуляция

Ткани человека студариум. Какие основные виды тканей присутствуют в организме человека. Митоз студариум. 11.05.2023. Основная функция S-клеток — секреция полипептида просекретина, неактивного предшественника секретина, превращающегося в секретин под действием соляной кислоты. Ученые из Стэнфордского центра линейных ускорителей (США) нашли способ делать снимки высокого разрешения, которые в мельчайших деталях показывают внутренности клеток. Подготовим вас к экзаменам ЕГЭ и ОГЭ 2023 по всем школьным предметам в режиме онлайн. Опытные преподаватели школы Вебиум, шаблоны конспектов и методические материалы.

Студариум биология егэ отзывы

Лекарства, которые вы даете вашим пациентам, препятствуют размножению раковых клеток, но они же и останавливают производство новых нейронов в мозге». И в 2023 году студенты и профессионалы смогут получить доступ к новым достижениям в этой науке благодаря конференции Студариум биологии. Синтетические клетки, которые выглядят, работают и реагируют на внешние воздействия, как живые, смоделировали исследователи Университета Северной Каролины-Чапел-Хилл. Новости. Предложить сайт. Определение набора хромосом растительных клеток, имеющих различное происхождение Для решения задач необходимо знать процессы, которые происходят с хромосомами при. По словам команды, клетки используют мультимодальное восприятие, чтобы учесть внешние сигналы и информацию изнутри клетки, например, количество клеточных органелл.

Оставить заявку

  • Впервые синтезированы клетки, как в человеческом организме
  • О чем эта статья:
  • T-лимфоциты и их циркуляция
  • Клеточный центр и его производные. Микротрубочки. Реснички и жгутики.
  • Write message @studarium_bio | VK
  • Как многоклеточные научились управлять своими клетками

Развитие прокариот - 76 фото

Ученым из Университета Северной Каролины-Чапел-Хилл удалось создать клетки, которые выглядят и функционируют как клетки живого организма, манипулируя ДНК и пептидами. Прокариотические клетки присущи древним одноклеточным организмам. Древнейшие на Земле организмы, не имеющие клеточного ядра, появившиеся около четырех миллиардов лет тому. Смотрите видео youtube канала Studarium онлайн и в хорошем качестве, рекомендуем посмотреть последнее опубликованое видео Актиния и рак-отшельник#биологияегэ. Тимус (или вилочковая железа) – один из главных органов иммунной системы, расположенный у человека за грудиной ниже ключиц, который отвечает за образование Т-клеток иммунной. Группа исследователей предполагает, что клетки обладают ранее неизвестной системой обработки информации, которая позволяет им принимать быстрые решения независимо от их.

Строение клеток эукариот. Цитоплазма, ядро, одномембранные органеллы

Более того, разброс размеров в каждой категории также был примерно одинаковым. Учитывая, что относительный размер самых маленьких например, эритроцитов и самых больших например, мышечных волокон клеток организма отличается довольно сильно — разницу можно сравнить с отношением размеров землеройки и голубого кита — это очень интересный результат. Как отмечают исследователи, размеры наших клеток идеально соответствуют их различным функциям, и любое нарушение этой шкалы часто свидетельствует о наличии заболевания. Очевидно, что такая регуляция клеток очень важна.

Вирусолог кандидат биологических наук Игорь Лосев раскрыл механизм функционирования иммунитета человека. Он раскрыл суть работы клеточного иммунитета. Клетки организма непрерывно синтезируют различные виды белков, за их работой следят другие клетки.

Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы потому и называется шероховатой. Комплекс аппарат Гольджи Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев цистерн и связанных с ними пузырьков. Располагается вокруг ядра клетки, внешне напоминает стопку блинов. Это - "клеточный склад". В нем запасаются жиры и углеводы, с которыми здесь происходят химические видоизменения. Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны. В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии. Лизосома греч. Лизосому можно ассоциировать с "клеточным желудком". Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце - вторичная лизосома с непереваренными остатками, которые удаляются из клетки. Лизосома может переварить содержимое фагосомы самое безобидное , переварить часть клетки или всю клетку целиком. В норме у каждой клетки жизненный цикл заканчивается апоптозом - запрограммированным процессом клеточной гибели. В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли. Пероксисомы лат. Если бы пероксид водорода оставался неразрушенным, это приводило бы к серьезным повреждениям клетки. Крупные пероксисомы в клетках печени и почек играют важную роль в обезвреживании ряда веществ. Вакуоли Вакуоли характерны для растительных клеток, однако встречаются и у животных у одноклеточных - сократительные вакуоли. У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом. Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму. Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию. Двумембранные органоиды Митохондрия Органоид палочковидной формы. Митохондрию можно сравнить с "энергетической станцией". Если в цитоплазме происходит анаэробный этап дыхания бескислородный , то в митохондрии идет более совершенный - аэробный этап кислородный. В результате кислородного этапа цикла Кребса из двух молекул пировиноградной кислоты образовавшихся из 1 глюкозы получаются 36 молекул АТФ. Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь - кристы, на которых имеется большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена матриксом. Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК - нуклеоида ДНК—содержащая зона клетки прокариот , и рибосом.

Для того, чтобы точно знать, что синтезировать, клетка использует молекулы РНК — своего рода «рецепты» для того, чтобы делать белки. Они не присутствуют в клетке постоянно, но могут синтезироваться по мере необходимости по информации из генов, которые находятся в ДНК. У нас есть специальный белок, который умеет синтезировать РНК, — полимераза. Для того, чтобы полимераза «поняла», где начало гена, перед геном есть регуляторная последовательность, которую она может химически «узнать». Когда необходимость в синтезе РНК пропадает — например, сахар из внешней среды ушёл, — специальный белок начинает блокировать регуляторную последовательность, мешая работе полимеразы. У нас есть много сахара, и мы включаем производство белка. Из-за того, что мы включили производство белка, который утилизирует сахар и позволяет его всосать в клетку, сахара в окружающей среде становится меньше и в какой-то момент он расходуется. Тогда нам нужно отключить производство белка. И так по кругу. Это называется «принципом обратной связи», и это элемент порядка, который уравновешивает хаос в жизни клетки. Как бактерии научились питаться цитратом натрия Бактерии конкурируют между собой: каждая хочет получить как можно больше ресурсов, размножиться и всех вокруг «задавить». На этой конкуренции строится их взаимодействие: им нужно уметь эффективно использовать свои ресурсы и находить конкурентные преимущества в среде. Поэтому клетки могут адаптироваться и находить новые источники энергии. Представим, что наша клетка потребляет обычный источник энергии — тот же сахар. Но внезапно в окружающей среде появляется новый источник. Поначалу клетка не может им питаться, потому что у неё для этого нет соответствующих белков, механизмов регуляции и механизмов обратной связи. Научиться питаться этим новым источником энергии клетке может быть очень полезно, но сложно. Изменение концентрации сахара — это краткосрочное изменение. А изменение источника энергии — это серьёзный вызов, который требует больших изменений внутри клетки. И вам нужно думать, где теперь покупать хлеб, — говорит лектор. Как популяция кишечных палочек в эксперименте Ленски научилась питаться цитратом? Здесь в полной мере проявили себя случайность в виде мутации и порядок в виде механизмов обратной связи. Оказалось, что рядом с геном поглощения цитрата у этого микроорганизма есть другой ген — исследовательница для простоты иллюстрации назвала его «геном X». У предковой формы бактерий ген поглощения цитрата не работал. Однако у мутировавших бактерий он дублицировался, присел на хвост «гену Х» и стал включаться или выключаться вместе с ним.

Подписка на дайджест

  • No results for your search
  • онлайн-школа вебиум
  • Митоз и мейоз за час. Набор хромосом и ДНК клетки. - YouTube
  • Студариум биология клетки

Похожие новости:

Оцените статью
Добавить комментарий