Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл, поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор.
Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива
Заметим, что и быстрые нейтроны появились в Поднебесной не без участия России. Выполнены запланированные исследования в обоснование безопасности многоцелевого исследовательского реактора на быстрых нейтронах МБИР и продления сроков эксплуатации БОР-60. Против продаж реакторов на быстрых нейтронах резко выступает США.
Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода
Все оборудование сертифицировано! Возможна быстрая доставка товара по России. Мы предлагаем источники бесперебойного питания ИБП следующих производителей: IMD, GE, Delta, Mwell, Riello, Eaton, которые обеспечивают надежную защиту качественной электроэнергией практически любой объект или оборудование. Источники бесперебойного питания представляют собой устройства, которые используют энергию заряда аккумуляторных батарей для питания нагрузки в «аварийном» режиме работы.
Сообщалось, что общий объем инвестиций в проект "Прорыв" по состоянию на сентябрь 2022 года оценивался в 240 млрд рублей. В СХК в конце прошлого года сообщали "Интерфаксу", что модель переработки отработавшего ядерного топлива будет введена в 2030 году.
Кроме того, расчеты показали, что минорные актиниды из ОЯТ под действием быстрых нейтронов в реакторе будут делиться на осколки, представляющие собой достаточно широкий спектр радиоактивных и стабильных изотопов, но в целом их потенциальная опасность будет гораздо ниже, чем у исходных минорных актинидов. Процесс трансмутации минорных актинидов также называют дожиганием в реакторе. Внедрение МОКС-топлива позволяет многократно расширить сырьевую базу атомной энергетики за счет обедненного урана и плутония и перерабатывать облученное топливо вместо хранения. Дожигание минорных актинидов — это следующий шаг в замыкании ядерного топливного цикла, который должен не только уменьшить количество ядерных отходов, подлежащих финальной изоляции, но и значительно снизить их радиоактивность. В перспективе это дает возможность отказаться от сложного и дорогостоящего глубинного захоронения отходов», — прокомментировал старший вице-президент по научно-технической деятельности АО «ТВЭЛ» Александр Угрюмов. Она появилась в 2021 году как часть продуктового направления «Сбалансированный ядерный топливный цикл» и рассчитана до 2035 года. Программа включает задачи по выделению минорных актинидов в отдельные фракции, их промежуточное хранение, вовлечение в топливо быстрых реакторов, эксплуатацию такого топлива, послереакторные исследования и др.
В теории, большинство промышленных реакторов должно работать на быстрых нейтронах и тяжелых изотопах урана. В реальности все ровно наоборот. Затем его превращают в топливо и опускают в активную зону реактора. Когда начинается реакция деления, рождаются быстрые нейтроны. Их замедляют, чтобы инициировать следующие расколы ядер. Замедлителем в современных реакторах выступает вода. Она же является теплоносителем, поэтому реакторы называются водо-водяными. Какое вещество можно сделать теплоносителем в реакторе на быстрых нейтронах и уране-238? Простая в обращении и доступная вода не подойдет: она замедлит нейтроны, и тяжелый изотоп урана откажется вступать в реакцию деления. Атомщики нашли решение — жидкие металлы: они не влияют на скорость нейтронов, зато прекрасно проводят тепло. Белоярская АЭС. Фото с сайта wikipedia. Пока во всех действующих установках используется расплавленный натрий, который активно взаимодействует с водой. Металл всплывает на ее поверхности и плавится, попутно выделяется водород, который может воспламениться. Полностью от воды в реакторе не избавиться: пар нужен, чтобы крутить турбину.
Навигация по записям
- Реакторы на быстрых нейтронах: как Россия оказалась впереди планеты всей
- Станции и проекты
- Мировой прорыв: уникальный реактор скоро заработает в Сибири
- журнал стратегия
- Реакторы на быстрых нейтронах: как Россия оказалась впереди планеты всей
Реакторы на быстрых нейтронах: как Россия оказалась впереди планеты всей
Внедрение замкнутого топливного цикла осуществляется прежде всего для реакторов на быстрых нейтронах, которые по своей физике изначально более «всеядны» с точки зрения топлива и делящихся материалов. важный этап в развитии технологий реакторов на быстрых нейтронах и замыкания ядерного топливного цикла в России. Эксперт Уваров: Россия сделала новый важный шаг к атомной энергетике будущего. Российским решением проблемы минорных актинидов должны стать инновационные реакторы на быстрых нейтронах.
Ученые Росатома обсудили в Обнинске будущее развитие реакторов на быстрых нейтронах
В нем реакторы на быстрых и на тепловых нейтронах будут работать совместно, обмениваясь топливом. Программа «Росатома» предполагает использовать блоки с «быстрыми» реакторами в сочетании с реакторами на тепловых нейтронах. Кроме того, реакторы на быстрых нейтронах, работая на МОКС‑топливе, способны нарабатывать плутоний, которого хватит, чтобы обеспечить себя и при необходимости другие реакторы новым топливом.
Multi-Purpose Fast Reactor (MBIR)
Энергетика является основой поступательного социально-экономического развития страны, снабжения промышленности и граждан. Отечественный топливно-энергетический комплекс работает на повышение конкурентоспособности национальной экономики, способствует развитию и благоустройству регионов страны, городов, посёлков, на улучшение качества жизни граждан.
А поток влияет на сроки набора дозы облучения — возможность провести эксперименты с облучением за три года вместо 10 лет безусловно важна для исследователей, и это и является главным преимуществом высокопоточного реактора, так же, как и возможность проведения экспериментов в более широком диапазоне температур. На основе МБИРа создается самая современная исследовательская площадка не только для России, но фактически для всего мира. Росатом неоднократно заявлял, что открыт для взаимовыгодного сотрудничества в данном проекте со всеми заинтересованными сторонами, поэтому и возникла идея сформировать на базе МБИРа Международный центр исследований. Росатом предложил зарубежным партнерам уникальную возможность — принять участие в создании исследовательской инфраструктуры, которая нацелена на решение актуальных научных задач в обоснование инновационных реакторных концепций и будет отвечать всем передовым требованиям. Универсальная исследовательская установка с высоким нейтронным потоком не может быть реализована в малом масштабе или на модульной основе, таким образом, высокая стоимость — неизбежный фактор. Данный факт приводит к идее, продвигаемой МАГАТЭ, а именно к региональным «центрам коллективного пользования», в рамках которых один реактор может обслуживать потребности многих стран.
Участвуя в проекте, международные партнеры смогут получить доступ к уникальному инструменту, которого нет больше нигде в мире, и при этом минимизировать и оптимизировать свои расходы. Текущий год стал отправной точкой для проведения работ по созданию МЦИ. Росатом уже подписал два международных меморандума о сотрудничестве и планирует до конца года подписать еще несколько. Таким образом, будет сформирован круг ключевых участников, которые смогут активно влиять на развитие проекта и условия участия в нем.
Следовательно, за период с 2012 по 2020 г. Реактор БН-800, согласно данным работы Л.
Рябева и др. Состоявшиеся переговоры главы российской атомной отрасли С. Кириенко с американским министром энергетики С. Бодмэном относительно судьбы оружейного плутония [14] показали, что для подгрузки в реакторы БН-600 и БН-800 ежегодно нужно 1,5 т оружейного плутония. Расчеты показывают, что до 2021 г. Таким образом, в нарабатываемом продукте останется три тонны плутония, что позволит обеспечить начальную загрузку реактора БН-1800.
Если в последующие после 2020 г. Очевидно, за время работы сибирских оборонных реакторов до пуска котельных будет наработано продукта еще лет на пять. Отсюда следует, что пуск завода РТ-2, который будет нарабатывать даже при переработке всего 800 т ОЯТ в год, то есть около 6,5 т энергетического плутония, должен произойти не ранее 2027-2030 гг. Вместе с тем эти расчеты не учитывают возможности переработки ОЯТ, выгруженного из реакторов БН после его выдержки хотя бы в течение 3-4 лет, то есть через 5 лет после загрузки. С учетом такой возможности можно будет либо построить еще один реактор БН-1 800 после 2025-2026 г. Только в этом случае до 2030 г.
С другой стороны, до 2050 г. Исходя из этого нельзя запаздывать с пуском завода РТ-2 более чем до 2040-2045 гг. Поэтому лучше ориентироваться на его пуск не позднее 2030 г. Куда более важно то обстоятельство, что после пуска завода РТ-2 количество энергетического плутония окажется выше потребляемого на реакторах БН-800 и БН-1 800. Кроме того, необходимо будет заняться переработкой ОЯТ реакторов БЫ, что резко снизит расход энергетического плутония из ОЯТ промышленных реакторов, работающих на обогащенном уране. Это потребует либо вводить не менее одного нового реактора БН-1 800 в пять лет, либо снижать мощность завода РТ-2, либо накапливать энергетический плутоний на складах, либо подгружать плутоний в тепловые реакторы.
Со всем этим необходимо определиться заранее, до пуска завода РТ-2. Исходя из соображений обеспеченности ядерным топливом, к 2050 г. По нашему мнению, это вполне обоснованные и разумные величины даже при значительных запасах природного урана в стране, а также при больших затратах на создание АЭС из-за возможного снижения цены топлива для АЭС с тРиэ быстрыми реакторами по сравнению с топливом для АЭС с тепловыми реакторами. Работа завода РТ-1, по мнению руководства завода, комбината и руководства соответствующих управлений Ро-сатома, будет обеспечена и без дополнительной загрузки его ОЯТ от реакторов ВВЭР-1000, которую предполагалось осуществить еще 10 лет назад. Во-первых, реактор БН-600 будет работать в основном на обогащенном уране еще лет 15, в связи с чем завод РТ-1, перерабатывая находящееся в хранилище ОЯТ, будет обеспечен сырьем лет на 20. Участие в изготовлении уран-плутониевого топлива для реакторов БН - серьезная работа в период до 2025-2030 гг.
Однако можно ли считать вопросы строительства и последующей эксплуатации реакторов БН в рассмотренном объеме однозначно приемлемыми для страны и ее хозяйства? К сожалению, сейчас мы не можем четко и однозначно ответить на этот вопрос. Это зависит от более высокой цены натрия по сравнению с чистой водой, а также дополнительного контура охлаждения натрием реакторного натрия. С другой стороны, в связи со значительным повышением цен на природный уран тепловыделяющие уран-плутониевые сборки для реакторов БН могут быть дешевле урановых для реакторов ВВЭР. Тем более что уран более дешевым не станет, особенно в России, где на новых урановых месторождениях его содержание в руде ниже по сравнению с ныне действующими. Без тщательного и конкретного просчета всех параметров даже только названных проблем трудно получить однозначный ответ на поставленные вопросы.
Поэтому число быстрых реакторов в России до 2050 г. Тем не менее создание и пуск завода РТ-2 все равно будет выгодным, так как это позволит использовать выделенный плутоний в изготовлении смешанного оксидного МОХ-топлива для реакторов ВВЭР-1200. С экономической точки зрения это тоже будет выгодно из-за высоких цен на природный уран. Создание реакторов БН и установок по изготовлению и переработке топлива для них, по-видимому, также будет выгодным. Таким образом, развитие заключительной части ядерного топливного цикла со строительством двух-трех или «числом поболее» коммерческих реакторов БН, создание установок по переработке ОЯТ этих реакторов и изготовлению уран-плутониевых твэлов, а также строительство завода РТ-2 с использованием части получаемого на нем плутония для реакторов ВВЭР является экономически выгодным проектом и нужным делом. В целом работа, проводимая сегодня по развитию ядерной энергетики в России экономически и политически необходима нашему государству.
Куртов А. Синицына Т. Трушников В. Костин В. Новорефтов Р. Топорков Р.
Опытные топливные кассеты будут загружены в реактор БН-800 на Белоярской АЭС весной 2024 года и пройдут опытно-промышленную эксплуатацию в течение трех микрокампаний ориентировочно полтора года. Минорные актиниды также называемые «младшие актиноиды» — это все остальные трансурановые элементы, помимо плутония, образующиеся в ядерном топливе в результате ядерных реакций во время эксплуатации в реакторе. Как и плутоний, эти элементы не встречаются в природе, а возникают только в результате трансмутации урана. Для атомщиков-радиохимиков особенно важны изотопы нептуния, америция и кюрия, поскольку именно они имеют наибольшее значение при переработке отработавшего ядерного топлива ОЯТ и обращении с радиоактивными отходами. Эти элементы обладают высокой радиоактивностью и токсичностью, выделяют много тепла, имеют большой период полураспада и являются наиболее опасными компонентами ядерных отходов. Российским решением проблемы минорных актинидов должны стать инновационные реакторы на быстрых нейтронах. В качестве топлива эти установки могут использовать не только обогащенный природный уран, но и вторичные продукты ядерного топливного цикла — обедненный уран и плутоний.
Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива
Испытания говорят о появлении принципиально новых ядерных реакторов, так называемых реакторов на быстрых нейтронах. При выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла то, что не знали куда деть, становится ценнейшим сырьем – реакторы на быстрых нейтронах «питаются» тем, что остается после работы обычных реакторов. МБИР — многоцелевой исследовательский реактор на быстрых нейтронах — резко отличается от своих прошлых собратьев тем, что специально задуман как «многоликий». Мне тут задали вопрос, на который сходу не получилось ответить, "а чем реакторы на быстрых нейтронах лучше обычных, ВВР например? Но картина решительно меняется при рассмотрении широкомасштабного внедрения ядерных реакторов на быстрых нейтронах и замыкании топливного цикла.
Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода
В итоге, на сегодняшний день в Обнинске уже собрали модель активной зоны перспективного реактора на быстрых нейтронах с натриевым теплоносителем БН-1200М. Замкнутый топливный цикл с реакторами на быстрых нейтронах обеспечивает сырьевую независимость и малоотходность атомной энергетики России не только за счет максимального вовлечения в энергопроизводство урана-238 из накопленных отвалов. В итоге, на сегодняшний день в Обнинске уже собрали модель активной зоны перспективного реактора на быстрых нейтронах с натриевым теплоносителем БН-1200М. В нем реакторы на быстрых и на тепловых нейтронах будут работать совместно, обмениваясь топливом. Физико-энергетический институт остается лидером в разработке и формировании реакторов на быстрых нейтронах. Реактор на быстрых нейтронах БН-800 Белоярской АЭС был полностью переведен на уран-плутониевое МОКС-топливо.
Курсы валюты:
- Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива
- Быстрые нейтроны на земле, под водой и в реакторах Поднебесной: кто этому прокладывал дорогу?
- Росатом получил лицензию на производство ядерного топлива для «реактора будущего»
- В Волгодонске отгрузили реактор на быстрых нейтронах
- К «Прорыву» добавляется реактор (12 февраля 2024) |