Умная медицина – 2022: от смарт-датчиков до автомномных роботов-хирургов. Роботы под воздействием магнитного поля могут передвигаться по кровеносным сосудам, скручиваться в спираль и удалять тромбы из вен, как пробку из бутылки.
Робот со скальпелем
- Искусственный интеллект (ИИ) для диагностики
- Российский AST — робот-хирург
- Другие продукты
- Хирурги Благовещенска провели первую операцию с роботом-ассистентом
VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году
Как устроен: Человекоподобный робот высотой всего 34 см создан специально для «живого» общения с человеком. Мировой рынок медицинских роботов, по данным компании Grand View Research, оценивается приблизительно в два миллиарда долларов. Миниатюрное устройство по принципу действия похоже на гибкий эндоскоп, который можно уменьшить еще больше для конкретных медицинских целей. Достаточно вспомнить антропоморфных роботов от Boston Dynamics — бренд практически стал синонимом современной прорывной робототехники.
Медицинский робот ассистировал амурским хирургам
Уже несколько недель изобретение служит «всевидящим оком» в этом отделении урологии. Пока, что робот с доработанным функционалом экспериментальный проект. Инженеры медицинского центра ежедневно следят за его работой. Инженеры в этой лаборатории пользуются как правило компьютерными технологиями, но привычный набор инструментов никто не отменял.
А некоторые из них, например, как вот это держатель с увеличительными стеклом — ребята и вовсе сделали сами. Дмитрий Саса - один из авторов проекта усовершенствования следящего прибора. Над возможностью модернизировать робот, инженер начал думать еще в прошлом году.
За внешний вид кошачьи уши и мордочки их называют робокошками. В ДИТ Москвы уточняют: Это милые роботы-курьеры, которые умеют доставлять еду и лекарства, встречать и провожать пациентов, помогать им с транспортировкой вещей и давать советы о здоровье. Ориентироваться в пространстве им помогают камеры. Две расположены в нижней части: они сканируют окружение 90 раз в секунду.
Так, они помогают выполнять упражнения на восстановление подвижности рук и ног, перемещая их, что позволяет создавать неврологические пути для работы мышц. Современные реабилитационные роботизированные конструкции делятся на два вида: терапевтический робот, который помогает пациентам выполнять упражнения например, экзоскелет , и вспомогательный робот-протез, который заменяет потерянные конечности7. Стоит упомянуть и об интеллектуальных инвалидных колясках, способных управлять центром тяжести при спусках и подъемах по лестнице. Экзоскелеты Это механическая конструкция, которую надевают на человека, чтобы частично вернуть ему подвижность или ускорить восстановление после травм и операций. Такой прибор напоминает робокостюм.
Экзоскелеты используются в реабилитации после травм спинного мозга и инсультов3. Например, датчики экзоскелета Hybrid Assistive Limb HAL , расположенные на коже, регистрируют небольшие электрические сигналы в теле пациента, и костюм реагирует движением в суставе3. Роботизированные протезы Протезы с роботизированными возможностями разработаны для восстановления функций утраченных конечностей. Они предназначены для постоянного ношения людьми с ограниченной мобильностью, без рук, ног, кистей3. Нейромышечно-скелетные протезы крепятся к кости и управляются с помощью двунаправленных интерфейсов, подключенных к нервно-мышечной системе человека с помощью электродов, имплантированных в нервы и мышцы8. В итоге роботизированная конечность приводится в движение силой мысли. Роботы-ассистенты и роботы консультанты В среднем врач тратит примерно 9 часов в неделю на административные задачи, а это целый рабочий день9. Первые синхронизируются с МИС и загружают туда данные, берут на себя бумажную работу, обзванивают пациентов, позволяя клинике сократить расходы на информирование и повысить лояльность клиентов. Вторые помогают пациентам записаться на приём и занимаются их маршрутизацией в холле клиники без привлечения сотрудников.
Такие человекоподобные роботы умеют общаться, отвечать на вопросы, способны распознавать лица и эмоции людей10. Роботы-компаньоны Роботы способны играть роль компаньонов и даже питомцев. Аналитики предполагают, что в будущем роботы для эмоциональной поддержки будут востребованы11. В больничных условиях роботы оказывают пациентам — особенно пожилым людям и детям — помощь, подбадривая и демонстрируя, как выполнять определенные двигательные действия3, например сесть и встать с постели. Они напоминают о необходимости принять лекарства или разговаривают с теми, кто лишен регулярного человеческого контакта что особенно актуально в контексте нехватки медсестёр и сиделок 4. Очень часто такие роботы похожи на людей или животных. Его задача — вызывать положительный эмоциональный отклик у пациентов и ускорять выздоровление4. Сейчас роботов для ухода и поддержки очень мало, в первую очередь из-за их высокой стоимости. Однако ожидается, что в течение следующего десятилетия их количество значительно возрастет4.
Роботы-тренажеры Нужны для совершенствования профессиональных навыков и используются в обучении врачей и медперсонала12. Помогают отработать распространенные клинические сценарии либо выступают в качестве симуляторов пациентов робопациенты, роботы-манекены , имитируя человека целиком или только относящуюся к теме обучения часть. Например, это может быть симулятор роженицы или недоношенного ребенка.
Интернет-журнал Новая Наука каждый день сообщает о последних открытиях и достижениях в области науки и новых технологий. Читайте последние новости высоких технологий, науки и техники. Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник.
Как это начиналось
- В России начнется серийное производство медицинских роботов
- Коллаборативные роботы серии RC
- Роботы в медицине: применение и возможности
- Другие новости
- Российский AST — робот-хирург
ТОП-5 роботов-врачей, способных заменить человека
Российские учреждения здравоохранения уже имеют 30 таких роботов. Амурские хирурги провели несколько операций с помощью медицинского робота. Как устроен: Человекоподобный робот высотой всего 34 см создан специально для «живого» общения с человеком.
Роботы в медицине: применение и возможности
На рынок робот вышел в 2004 году, и все продвинутые медицинские учреждения начали приобретать данного робота, поскольку он оказывает успокаивающие действие на пациентов и тем самым облегчает работу медицинскому персоналу. Заряжается робот от сети. Стоимость робота-тюленя составляет 7000 евро. Робот тюлень и его терапевтическое действие Когда человек держит и ласкает тюленя Паро, он успокаивается и расслабляется. Все движения робота достаточно мягкие и плавные. Общение с тюленем Паро делает человека более спокойным и позитивно влияет на его душевное состояние, что является несомненным плюсом не только для самого пациента, но и для персонала, который работает с пациентами. И что самое интересное, до создания данного робота, учёные предполагали, что роботы и искусственный интеллект могут делать всё, но не могут дарить нежность, любовь и привязанность. Однако именно это и дарит робот-тюлень Паро своим пользователям. Учёные из Ле-манского университета во Франции решили более детально изучить воздействие робота на пациентов и на работу медицинского персонала. Ученые решили понаблюдать за пациентами, использующими робота, и за медсёстрами в местных домах престарелых.
Фото: Johns Hopkins University В целом медицинские роботы сегодня используются в нескольких направлениях. Описанная выше модель относится к роботам-хирургам — одним из самых продвинутых решений. Их пока мало. Более распространенный тип помощи — ассистирование настоящим врачам. Например, в неподвижном удерживании инструментов во время операции. Стабильное позиционирование инструментов ускоряет процесс и делает проникновение малоинвазивным. Роботы также применяются в лабораториях, повышая точность выполнения анализов пациентов. Еще один вариант — реабилитационные роботы, помогающие быстрее восстанавливаться после травм. Например, пассивным движением пораженных частей тела пациента. Лазеры помогут в борьбе с онкологией? Про перспективы лазерных технологий как в глобальном, так и в прикладном смыслах говорим с Ириной Нечипоренко, руководителем отдела продаж Mediola. На сегодняшний день применение подобного оборудования достаточно обширно. Оно имеет как хирургическое, так и диагностическое, терапевтическое и косметологическое назначение. Амбулаторная хирургия с применением лазерных технологий в Беларуси ускоренно развивается последние 15 лет, мы сейчас говорим о стационарозамещающих вмешательствах. При консервативном лечении человек должен как минимум несколько дней находиться в хирургическом стационаре. Лазеры же сроки госпитализации уменьшают или же и вовсе дают возможность госпитализации избежать. Такую хирургию еще называют хирургией «одного дня», когда пациент буквально за несколько часов избавляется от многих видов недугов. Еще один важный плюс — уменьшение количества послеоперационных осложнений. Как правило, лазерные технологии малотравматичны и малоинвазивны, восстановление идет быстрее — качество жизни в послеоперационном периоде ощутимо выше. Справившем Ирину о перспективах развития технологии. Пока — краткосрочных. Существует много направлений хирургии, где есть возможность более плотно взаимодействовать с докторами, получать от них обратную связь как в отношении эффектов, которые они хотели бы видеть при применении лазеров, так и в совершенствовании средств доставки излучения. Популярным направлением также выступает создание компьютерных моделей лазерного воздействия на ткани. Современное ПО позволяет конструировать интерактивные модели, предсказывающие влияние лазерного излучения на конкретный участок тела человека. Фото использовано в качестве иллюстрации А теперь задаемся вопросом про более отдаленное будущее и глобальные вариации улучшений: — Перспективная ветвь, где использование технологии может быть еще глубже, — онкология. Несмотря на повсеместное применение лазерного оборудования уже сегодня — например, в Беларуси востребована технология фотодинамической терапии, метод лечения предопухолевых заболеваний и даже злокачественных новообразований, — сфера будет изучаться глубже. Сейчас существуют методики, которые важны особенно с паллиативной точки зрения: если от болезни не избавиться полностью, то возможно улучшить качество жизни пациента. Лазеры помогут и тут. Если говорить глобально, то перспектива лазеров как хирургического инструмента при борьбе с опухолями онкологического характера весьма высокая.
IoMT — это сеть подключенных медицинских приборов, которые интегрированы с облачными вычислительными системами. Носимые технологии — пульсометры и смартчасы — одни из самых популярных устройств, которые подключены к системе IoMT. Трекеры собирают данные с помощью датчиков и сообщают о таких показателях организма, как частота сердечных сокращений, температура тела и артериальное давление. Эти данные можно отправлять врачам для анализа, диагностики и лечения. Наномедицина Нанотехнологии используются для создания таких высокочувствительных диагностических инструментов, как наносенсоры, которые позволяют блокировать заболевания и состояния на ранних стадиях. Например, ученые разработали сверхминиатюрных нанороботов, которые вводятся в кровеносные сосуды для поиска раковых клеток или вирусов. Регенеративная медицина — важная часть наномедицины. Исследователи разрабатывают новые материалы и методы лечения — нановолокна и наночастицы, — которые помогают восстанавливать и регенерировать поврежденные ткани и органы. Умные имплантаты и трехмерная печать Умные имплантаты — это крошечные компьютеризированные устройства, вживляемые в организм для мониторинга состояния здоровья и восстановления определенной функциональной независимости у пациентов с различными видами паралича. Ученые уже успели установить микроэлектродный массив размером с монетку в зрительную кору головного мозга человека, страдающего слепотой, что позволило ему воспринимать буквы и формы. Трехмерная 3D печать в здравоохранении используется для создания моделей, медицинских устройств, индивидуальных имплантатов или суставов, протезов, искусственных органов и клеток кожи для пострадавших от ожогов.
Эта технология значительно повышает точность и снижает риск осложнений во время операции. Медицинские школы и институты используют AR-приложения для преподавания анатомии, позволяя студентам взаимодействовать с 3D-моделями человеческого тела. Столь практический подход улучшает понимание и запоминание сложных медицинских концепций. В то же время VR — мощный инструмент для снятия негатива во время разного рода процедур. Пациенты погружаются в успокаивающую VR-среду, отвлекаясь от боли и дискомфорта при обработке ран или физиотерапии. VR также используется при лечении фобий, посттравматических стрессовых расстройств ПТСР и тревожности. Пациенты безопасно противостоят страхам в контролируемой виртуальной среде, что делает терапию более эффективной. Интернет медицинских вещей IoMT Интернет медицинских вещей — один из главных технологических трендов в здравоохранении в 2023 году. IoMT — это сеть подключенных медицинских приборов, которые интегрированы с облачными вычислительными системами. Носимые технологии — пульсометры и смартчасы — одни из самых популярных устройств, которые подключены к системе IoMT. Трекеры собирают данные с помощью датчиков и сообщают о таких показателях организма, как частота сердечных сокращений, температура тела и артериальное давление.
Вкалывают роботы: будущее в медицине наступило
Единственный медицинский робот, понимающий по-русски, ассистировал хирургам Амурской областной больницы. Нейрохирургия – направление медицины, где выполняются сверхточные оперативные вмешательства, именно тут роботы и нужны. Китайское предприятие в ходе проходящей в Шанхае международной выставки показало прототип антропоморфного робота GR-1.
Робот-хирург MIRA для работы в космосе уже создан — что о нем нужно знать?
Склифосовского робокошка базируется на первом этаже в зоне триажа. Она помогает отвозить вещи больных и посетителей в смотровую. Для этого у робота есть умные индукционные лотки, которые позволяют ему понять, что сумка поставлена или снята. Филатова работают сразу две робокошки. Одна из них тоже базируется на первом этаже в зоне проведения триажа, вторая — на втором в зоне комфортного пребывания. Робот на первом этаже помогает отвозить вещи пациентов и посетителей в смотровую, провожает их в комнату отдыха, до туалета или лифта. Задача робокошки на втором этаже — перевозить биологические материалы, постельное белье и медицинские принадлежности. В случае успеха пилотного проекта робокошки появятся и в остальных стационарах города.
Инфографика 2 В 2021 году была утверждена программа «Оптимальная для восстановления здоровья медицинская реабилитация» в виде отдельного федерального проекта. По данным Минпромторга России, с 2017 по 2023 г. Согласно утвержденной в 2017 г. А также увеличение объема экспорта российской реабилитационной продукции до 4,5 млрд руб.
Инфографику 3. В мае 2023 года Правительство расширило программу поддержки производителей высокотехнологичной реабилитационной продукции. Субсидии предоставляются на финансовое обеспечение затрат на разработку, испытание и внедрение инновационной продукции реабилитационной направленности с участием инвалидов. На один проект можно получить до 50 млн.
Инфографика 3 В 2022 г. Среди них - апробация внедрения универсального гидравлического протеза бедра. Также Агентство по технологическому развитию по инициативе Минпромторга России поддерживает проекты, которые предусматривают разработку конструкторской документации на комплектующие изделия. Кроме того, в рамках федерального проекта «Оптимальная для восстановления здоровья медицинская реабилитация», в 2023 году Правительством было выделено свыше 9 млрд.
На последней телеконференции с инвесторами гендиректор Tesla заявил, что Optimus сможет выполнять ряд задач на электромобильном заводе уже к концу текущего года, а еще через год роботов запустят в продажу. Напомним, в декабре 2022 года компания Tesla представила первого человекоподобного робота - Optimus. Прототип модели, который был разработан еще в феврале, вышел на сцену, чтобы помахать присутствующим и станцевать перед ними.
Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник. Направляя нам электронное письмо или заполняя любую регистрационную форму на сайте, Вы подтверждаете факт ознакомления и безоговорочного согласия с принятой у нас Политикой конфиденциальности.
Медицинские роботы идут. Вы готовы?
Вместо того чтобы дать вам таблетку или сделать укол, врач направляет вас к специальной медицинской команде, которая имплантирует крошечного робота в вашу кровь. Современные медицинские роботы выполняют 2 основные задачи: освобождение от рутины, качественное улучшение лечения и решение нестандартных задач. Роботы-курьеры начали помогать врачам и пациентам в пилотном режиме в трех столичных больницах. приглашает на диспансеризацию. Роботы под воздействием магнитного поля могут передвигаться по кровеносным сосудам, скручиваться в спираль и удалять тромбы из вен, как пробку из бутылки. Давайте рассмотрим некоторых из этих медицинских роботов более подробно.
Полная роботизация: как искусственный интеллект помогает врачам
Системы нейрореабилитация после инсульта и при других неврологических заболеваниях на основе медицинской робототехники и современных нейротехнологий. «Благодаря появлению роботов новый импульс развития сегодня получает медицинский сервис. В начале 2022 года случился настоящий медицинский прорыв: впервые хирургическую операцию полностью выполнил робот без участия человека. Единственный медицинский робот, понимающий по-русски, ассистировал хирургам Амурской областной больницы. Стереотаксический роботизированный манипулятор – это первый робот российского производства для нейрохирургии. Neura Robotics, мировой пионер в области когнитивной робототехники, и OMRON Robotics and Safety Technologies Inc.
Робототехника
- Последние новости о роботах - РТ на русском
- журнал стратегия
- Медицина + Робот
- Революция в медицине: как робототехника меняет правила игры
Медицина будущего: мы станем роботами?
Что касается российской доли умной медицины в глобальной экономике, то пока, по словам Ольги, она занимает весьма малую долю. Всё потому, что отечественный рынок в этой сфере только развивается. При этом российская умная медицина, по словам экспертов, может значительно увеличиться в объемах в достаточно короткие сроки. Между тем, чтобы умные медицинские технологии развивались, отдельные государства и всё мировое сообщество в целом должны проработать регулирование рынка. При этом есть условия, которые необходимо соблюсти. Были выделены группы заболеваний, чаще всего хронические или распространенные, а также разработаны требования к квалификации и стажу врачей, которые могут иметь больше полномочий в онлайн-формате». В качестве другого примера Игорь Джекиев приводит попытки американского регулятора в лице управления контроля качества продуктов и лекарств Food and Drug Administration, FDA формализовать связанный с цифровыми биомаркерами тренд. С этой целью ведомство даже выпустило ряд рекомендаций, однако в них, по замечанию экспертов, имеется большое количество белых пятен. Говоря о России, с одной стороны, в стране действует специальный закон, подробно описывающий все стандарты и правила оказания телемедицинской помощи.
Однако на сегодня перечень медицинских дистанционных услуг пока ограничен.
В программу соревнований была включена кибатлетика — уникальная дисциплина для людей с инвалидностью. Они состязались в умении использовать киберпротезы, электроколяски и нейроинтерфейсы. В свою очередь, битва роботов и танцевальный симулятор стали местом притяжения семей, поскольку соревнования оказались интересны даже самым юным зрителям.
Об этом в интервью RT сообщил генеральный директор предприятия-разработчика «Аркодим» Артём Барахтин.
Управляется он с помощью света двумя лазерами. В университете Лидса в Британии создали робота в виде щупальца, он движется благодаря магнитному полю. Его планируют использовать при лечении рака легких. Против тромбоза собираются применять свою разработку российские ученые из университета ИТМО в Петербурге. Даниил Кладько, инженер, аспирант ИТМО, сотрудник лаборатории нанофармацевтики: «Будет проводиться малоинвазивная операция, которая представляет собой разрез в небольшом месте. Так как робот достаточно миниатюрный, он погружается в сосуд, затем с помощью магнитного поля с внешней стороны идт этот робот по всему организму в место цели, затем включается вращающееся поле, происходит захват тромба и вывод его через то же отверстие».
По словам создателей, робот из мягкого композита содержит магнитные частицы, что и позволяет вести его по сосудам, а пластичность материала дает менять форму для разных целей. Анна Пожиткова, инженер ИТМО, сотрудник лаборатории нанофармацевтики: «Например, мы доводим ее в форме полоски, то есть она не такая разрушительная, а потом, когда мы подходим ближе к тромбу, мы можем поменять форму на спираль и пробурить тромб». Робот уже успешно выдержал испытания в пробирке и готовится к доклиническим исследованиям. Искусственный интеллект тоже вовсю помогает врачам. Например, приложение для самодиагностики родинок скачали уже более 250 тысяч раз. Пользователь может загрузить фотографию новообразования на теле, а нейросеть за несколько секунд выдаст заключение, нет ли повода срочно обратиться к специалисту. Оксана Гаранина, дерматолог, онколог, кандидат медицинских наук: «На сегодняшний день в приложение поступили около полумиллиона изображений.
Есть подтвержденные морфологически злокачественные образования кожи. Работа нейросети все равно контролируется, обучение нейросети происходит дважды в год, она получает определенный набор новых верифицированных изображений. Мы проводили внутреннее исследование по эффективности ее работы, то есть диагностической точности, эффективность растет в разы».
Ну и главное: в случае ошибочного диагноза и наступления нехороших последствий кто будет за это безобразие отвечать? Собянин, который внедрял эту технологию? Разработчик ИИ? Главврач больницы? Ответ нам известен почти наверняка: никто.