Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в том же "Интерстелларе". Гаргантюа — это сверхмассивная черная дыра, ставшая популярной в массовой культуре после фильма Интерстеллар, именно в неё затянуло Купера к концу фильма. Я постарался графически обыграть маршруты, будто это лучи света вокруг горизонта событий черной дыры. Узнайте о влиянии черной дыры Гаргантюа на время и пространство и как это можно соотнести с нашим миром. На рисунке 8.1 показана быстро вращающаяся черная дыра (назовем ее Гаргантюа) на фоне звездного поля, какой она предстала бы перед вами, находись вы в экваториальной плоскости Гаргантюа. Владелец сайта предпочёл скрыть описание страницы.
Сверхмассивная чёрная дыра "Гаргантюа"
Кинематограф и сверхмассивная черная дыра. Гаргантюа – этот термин человечество стало широко употреблять по отношению к черным дырам после того, как на экраны вышел фильм «Интерстеллар». При этом ученые выяснили, что аппетит дыры стабильно выше так называемого предела Эддингтона – количества материи, которую может поглотить черная дыра. Важно понимать, что чёрная дыра — это не пустое пространство, а, скорее, место, где огромное количество материи помещается в крошечную область, называемую сингулярностью, которая бесконечно мала и плотна (тут есть разные варианты, но остановимся на этом). Узнайте о влиянии черной дыры Гаргантюа на время и пространство и как это можно соотнести с нашим миром. Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты.
Гаргантюа черная дыра - 85 фото
3. Черные дыры и сингулярности. В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты. Эти снимки неожиданным образом показали, что черная дыра-«гаргантюа» и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого «звездного мегаполиса». Вымышленная черная дыра «Гаргантюа» (сцена из фильма «Интерстеллар»).© Paramount/Warner Brothers/The Kobal Collection.
Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков
Представленная черная дыра выглядит почти так, как и ожидали ученые, полагаясь на теорию относительности. Слева — изображение черной дыры в центре M87. В центре — изображение, полученное путем симуляции, справа — размытое изображение симуляции для соответствия разрешению телескопа. Однако обычные люди, складывающие впечатления о черных дырах на основе фильмов, могли ожидать что-то подобное кадру из "Интерстеллар": Однако в действительности разница не столь большая, как кажется. Изображение, представленное в "Интерстеллар", почти корректно. Главное отличие в том, что вокруг центра вымышленной черной дыры находится полоса материи, которой нет на M87. Причина в том, что мы наблюдаем за объектом со стороны одного из полюсов, а не с экваториальной части. Диск материи вокруг M87 просто скрыт с нашей позиции. Аналогия элементарна — если смотреть на Сатурн со стороны полюса, то диск не будет пересекать экваториальную часть.
Как было отмечено выше, наш квазар тусклый, супермощным его назвать трудно, но даже сами астрономы не ожидали, что истинные результаты будут такими. Более того, по очевидным данным, эта черная дыра даже не поглощает материю, а объекты, которые находятся в ее окружении, не нагреваются. Также был подмечен интересный факт: квазар буквально утопает в газовых облаках, материя которых крайне разряжена. Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие звездные скопления. Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус. Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей.
Размеры сверхмассивной черной дыры немного превышают среднее расстояние от Земли до Солнца, а именно составляют 1,2 астрономические единицы. Гравитационный радиус этого квазара в 10 раз меньше основного диаметра. При таких показателях, естественно, материя просто не сможет сингулировать до тех пор, пока непосредственно не пересечет горизонт событий. Парадоксальные факты Галактика Млечный Путь относится к разряду молодых и новых звездных скоплений. Об этом свидетельствует не только ее возраст, параметры и положение на известной человеку карте космоса, но и мощность, которой обладает ее сверхмассивная черная дыра. Однако, как оказалось, «смешные» параметры могут иметь не только молодые космические объекты.
Множество квазаров, которые обладают невероятной мощностью и гравитацией, удивляют своими свойствами: Обычный воздух зачастую имеет большую плотность, чем сверхмассивные черные дыры. Попадая на горизонт событий, тело не будет испытывать приливных сил. Дело в том, что центр сингулярности находится достаточно глубоко, и дабы достичь его, придется проделать долгий путь, даже не подозревая, что обратной дороги уже не будет. Гиганты нашей Вселенной Одним из самых объемных и старых объектов в космосе является сверхмассивная черная дыра в квазаре OJ 287. Это целая лацертида, расположенная в созвездии Рака, которая, к слову, очень плохо видна с Земли. В ее основе лежит двойная система черных дыр, следовательно, имеется два горизонта событий и две точки сингулярности.
Больший объект имеет массу 18 миллиардов масс Солнца, практически как у небольшой полноценной галактики. Этот компаньон статичен, вращаются лишь объекты, которые попадают в его гравитационный радиус.
Мы родились на Земле, и наше тело приспособилось к определенным гравитационным условиям, но когда мы находимся в космосе длительное время, наши мышцы начинают ослабевать. Читайте также: 10 изменений, которые происходят с нашим телом в космосе С этой проблемой сталкиваются и герои в фильме "Интерстеллар".
Чтобы справиться с этим, ученые создают искусственную гравитацию в космических кораблях. Одним из способов сделать это — раскрутить космический корабль, как в фильме. Вращение создает центробежную силу, которая отталкивает объекты к внешним стенкам корабля. Это отталкивание похоже на гравитацию, только в обратном направлении.
Такую форму искусственной гравитации вы испытываете, когда едете вокруг кривой малого радиуса и вам кажется, что вас отталкивает наружу, от центральной точки кривой. Во вращающемся космическом корабле стены для вас становятся полом. Вращающаяся черная дыра в космосе Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры. Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название — сингулярность.
Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Этот процесс искажения называется "увлечение инерциальных систем отсчёта" или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию. Космический корабль "Эндюранс" направляется к Гаргантюа - вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца.
Она находится на расстоянии 10 миллиардов световых лет от Земли, и вокруг нее вращается несколько планет.
В итоге расстояние на небе, которое занимает черная дыра в M87, составляет всего 20 микросекунд. Чтобы понять, что это значит, представьте 50-копеечную монету, которую наблюдают с расстояния в 3,5 километра: угол между глазом и краями монеты составит 1 угловую секунду. А угловая микросекунда в миллиард раз меньше угловой секунды. Образно говоря, это позволило бы читать газету в Нью-Йорке, сидя в кафе в Париже». На то, чтобы его сделать, ушло почти 100 лет Впервые о существовании черных дыр заговорили почти сто лет назад, когда немецкий физик Карл Шварцшильд вывел из общей теории относительности Эйнштейна существование областей, где вещество и энергия сосредоточены так плотно, что гравитация не выпустит свет и искривит пространство. Несмотря на то что астрономы не могли наблюдать черную дыру непосредственно, в их существовании никто не сомневался.
Но саму черную дыру все равно не увидеть Поскольку черная дыра ничего не излучает, ее нельзя увидеть просто так.
Черная дыра Гаргантюа
это одно из самых загадочных явлений вселенной. Она представляет собой область космического пространства с крайне высокой плотностью и силой притяжения, из которой ничто, включая свет, не может выбраться. При этом ученые выяснили, что аппетит дыры стабильно выше так называемого предела Эддингтона – количества материи, которую может поглотить черная дыра. черная дыра. Черные дыры могут быть дружелюбнее, чем принято считать.
Отзывы, вопросы и статьи
- Линзирование быстровращающейся черной дыры – Гаргантюа. Интерстеллар: наука за кадром
- Познание тьмы: как наука проникает в тайны черных дыр | Вокруг Света
- Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков
- Подписка на дайджест
- Гаргантюа черная дыра обои - 65 фото ★
- Энергия из черных дыр – выдумка или реальность?
Почему черная дыра называется Гаргантюа
НАСА телескоп Хаббл. Чёрная дыра фото из космоса. Чёрная дыра снимки из космоса. Сверхмассивные черные дыры в центре масс галактик. Черная дыра Рейснера-Нордстрема. Ядро Галактики Млечный путь черная дыра. Белая дыра в космосе. Первичные черные дыры.
Чёрные дыры во Вселенной. Маленькая черная дыра. Снимки черных дыр. Чёрная дыра Рейснера нордстрёма. Черная дыра сбоку. Квазар 3с9. Сверхмассивная черная дыра в галактике.
Черные дыры фильм 1995. Черная дыра вместо солнца. Огромная черная дыра. Сверх масивная чёрная дыра. Черная дыра изнутри. Гравитационные воронки. Дыра внутри.
Гаргантюа черная дыра Интерстеллар. Черная дыра обои. Красивая черная дыра. Черная дыра фото. Зарождение чёрной дыры. Белая дыра. Черная дыра м57.
Притяжение звезд. Сверхмассивная нейтронная звезда. Рождение черной дыры. Электрическая черная дыра. Звук черной дыры. Микроскопические черные дыры. Квантовые черные дыры.
Планковская черная дыра. Черная дыра маслом. Черная дыра диск аккреции.
Там нет настоящих частиц, в том смысле, что если вы запустите фотон или электрон через эту область пространства, они никогда не отразятся от частицы квантового вакуума.
Это описание даёт нам возможность заглянуть в присущую квантовому вакууму "Дрожь", и показывает, что там есть резервуар виртуальных частиц, позволяющий нам трактовать присущую пустому пространству энергию как сумму всех этих виртуальных частиц. Повторюсь, так как это важно: существует энергия, присущая самому пустому пространству, и её можно представить, как сумму квантовых флуктуаций, присущих этому пространству. Пойдём дальше. Представим, что пространство, вместо того, чтобы быть плоским и пустым, всё ещё пустое, но уже искривлено - то есть, в гравитационном поле космоса существуют отклонения.
Как будут выглядеть наши квантовые флуктуации? В частности, если мы позволим пространству искривляться из-за присутствия чёрной дыры, как они будут выглядеть снаружи и внутри горизонта событий? Но эти пары частиц и античастиц не являются реальными, а представляют собою лишь способ визуализации и подсчёта энергии, присущей пространству. Дело в том, что при искривлённом пространстве, как вы помните, существуют отклонения гравитационного поля.
Мы используем флуктуации для помощи в визуализации энергии, присущей пустому пространство, но могут возникать флуктуации, начинающиеся снаружи горизонта событий, которые попадут внутрь горизонта, не успев ре - аннигилировать. Но нельзя украсть энергию у пустого пространства - что-то должно случиться, чтобы её сохранить. Поэтому каждый раз, когда виртуальная частица или античастица падает внутрь, настоящий фотон или их набор должен появиться для компенсации. И этот реальный фотон, покидающий горизонт событий, и уносит энергию от чёрной дыры.
Тот способ, который мы ранее использовали для визуализации процесса, когда одна из пары частиц падала, а другая - убегала, слишком наивен, чтобы быть полезным, поскольку уменьшению чёрных дыр способствуют не частицы или античастицы, а фотоны, соответствующие спектру чёрного тела. Я предпочитаю картинку получше, хотя она всё равно ещё довольно наивна. Представьте квантовые флуктуации, при которых каждый раз, когда у вас появляется пара частица - античастица, из которых одна падает внутрь, появляется ещё одна пара частица - античастица, у которой внутрь падает другая. Это всё ещё не идеальная аналогия потому что это всего лишь аналогия , но, по крайней мере горизонт событий в ней покидают фотоны, что соответствует предсказаниям излучения хокинга.
Фактически - хотя вам придётся провести подсчёты квантовой теории поля в искривлённом пространстве - времени, чтобы это выяснить - излучение хокинга предсказывает, что спектр фотона будет соответствовать абсолютно чёрному телу с температурой, заданной: Что даст температуру меньше одного микрокельвина для чёрной дыры массой равной массе солнца, меньше одного пикокельвина для чёрной дыры в центре нашей галактики, и всего лишь несколько десятых от аттокельвина для самой крупной из известных чёрных дыр. Скорость уменьшения, которому соответствует это излучение, настолько мало, что чёрные дыры будут расти, даже если они будут поглощать один протон за промежуток времени, сравнимый с возрастом нашей вселенной - это будет продолжаться ещё примерно 1020 лет. После этого чёрные дыры массой с солнце, наконец, начнут терять из-за излучения хокинга в среднем больше энергии, чем поглощают, и полностью испарятся через 1067 лет, а самые крупные из них - через 10100 лет. Это может сильно превышать возраст вселенной, но это и не вечность.
А уменьшаться они будут благодаря излучению хокинга, испуская фотоны. В итоге: у пустого пространства есть энергия нулевого уровня, которая не равна нулю, а в искривлённом пространстве на горизонте событий чёрной дыры появляется низкоэнергетический спектр излучения абсолютно чёрного тела. Это излучение отнимает массу у чёрной дыры и слегка сжимает горизонт событий со временем. Тогда частица от одной пары и античастица от другой аннигилируют, создавая реальные фотоны, покидающие чёрную дыру, а другая виртуальная пара частиц падает в дыру и забирает её энергию или массу.
Источник: Geektimes. Гаргантюа черная дыра. Вращающаяся черная дыра в космосе Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры. Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название — сингулярность.
Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Этот процесс искажения называется "увлечение инерциальных систем отсчёта" или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию. Космический корабль "Эндюранс" направляется к Гаргантюа - вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца.
Она находится на расстоянии 10 миллиардов световых лет от Земли, и вокруг нее вращается несколько планет. Гаргантюа вращается с поразительной скоростью 99,8 процентов от скорости света. Аккреционный диск Гарагантюа содержит газ и пыль с температурой поверхности Солнца. Диск снабжает планеты Гаргантюа светом и теплом.
Сложный вид черной дыры в фильме связан с тем, что изображение аккреционного диска искривлено гравитационным линзированием. На изображении появляется две дуги: одна образуется над черной дырой, а другая под ней. Черные дыры кто открыл. Там, за горизонтом Черная дыра — это самоподдерживающееся гравитационное поле, сконцентрированное в сильно искривленной области пространства-времени изображение с сайта www.
С некоторой долей образности можно сказать, что это самоподдерживающееся гравитационное поле, сконцентрированное в сильно искривленной области пространства-времени. Ее внешняя граница задается замкнутой поверхностью, горизонтом событий. Если звезда перед коллапсом не вращалась, эта поверхность оказывается правильной сферой, радиус которой совпадает с радиусом Шварцшильда.
Правительства, естественно, срочно поднимают армии, но агрессивных действий со стороны инопланетян не следует, поэтому нужно как-то контактировать. Для этого желательно понять, как общаться, и власти США обращаются к высококлассному лингвисту Луизе Бэнкс. Ей предстоит освоить язык, который абсолютно не вписывается в рамки человеческих. Один из самых сложных и восхитительных научно-фантастических фильмов поставлен по повести Теда Чана «История твоей жизни», в которой лингвистические экзерсисы проработаны еще тщательнее.
Вопрос о существовании пришельцев мы сразу выносим в область базового фантастического допущения, которое позволяет нам сосредоточиться на мысленном эксперименте. Лингвист Александр Пиперски в лекции из цикла «Ученые против мифов» сделал несколько интересных наблюдений по мотивам «Прибытия». Правда По сюжету фильма Луиза Бэнкс расшифровывает язык пришельцев-гептаподов, в результате чего неожиданно получает дополнительный бонус. Дело в том, что представленные в картине инопланетяне не оперируют понятиями времени, и их письменный язык — тоже. Поэтому Луиза вместе с языком некоторым образом осваивает и мышление его носителей и, как следствие, получает возможность немножко видеть будущее. Разумеется, в реальности нет языка, который позволит вам видеть будущее, это просто красивый мысленный эксперимент. Но в то же время существует гипотеза лингвистической относительности Сепира — Уорфа, которая предполагает, что язык оказывает влияние на то, как мы мыслим, и есть реальные эксперименты, которые показывают, что некоторая зависимость есть.
Миф Самым фантастическим явлением «Прибытия» Александр Пиперски назвал профессию главной героини. Луиза, как выясняется по ходу сюжета, владеет несколькими языками, в том числе санскритом и персидским, и читает курс по истории португальского языка. Но на самом деле в фильме она выполняет роль переводчика, то есть налаживает коммуникацию. Лингвист, в принципе, может не уметь объясняться ни на одном иностранном языке, он изучает их внутреннее устройство. Такие вот неожиданные тонкости. На Земле большие проблемы: многие сельскохозяйственные растения болеют и перестают расти. Еще как-то держится кукуруза, но и она скоро начнет исчезать.
Человечеству грозит голод, а пылевые бури делают жизнь невыносимой. Однажды он узнает о том, что есть секретное подразделение NASA, которое готовит важную миссию — поиски подходящей для переселения людей планеты. Купер оставляет семью и соглашается на опасное космическое путешествие, скорее всего, в один конец. Научно-фантастическая драма «Интерстеллар» создана режиссером Кристофером Ноланом в тесном сотрудничестве с видным американским астрофизиком, впоследствии лауреатом Нобелевской премии Кипом Торном. Сейчас ее называют одним из самых научно достоверных фантастических фильмов в истории кинематографа. Но, поскольку это все-таки художественное произведение, оно содержит некоторые допущения, двигающие сюжет. По словам Кипа Торна: «Часть из показанного в фильме — чистая правда, другая часть основана на научных предположениях, а еще часть — чистой воды спекуляция».
Правда Поскольку действие космической части картины плотно связано с черными дырами, требовалось как-то визуализировать их на экране. Кип Торн взялся за эту задачу вместе со своими учениками, потом подключились мастера компьютерных спецэффектов, и результатом их работы стала восхитительная не только с кинематографической, но и с научной точки зрения черная дыра Гаргантюа. Черная дыра, как известно, поглощает свет и не отдает его. По идее, выглядит это не очень интересно, но хитроумный Торн с коллегами сообразил, что ее должны окружать притягиваемые газ и вещество разрушающихся звезд. Всё это кружится вокруг дыры по сложной траектории, которую вполне можно просчитать. Что они и сделали. Шесть лет спустя астрофизики из проекта EHT получили первое изображение реальной черной дыры в центре нашей галактики.
И вот сюрприз: она действительно похожа на визуализацию из «Интерстеллара».
Конечно, это не прямолинейная визуализация космического объекта, а образ, близкий по пластике и эстетике, и вдохновивший на графически чистую геометрию. Но ведь можно представить, что Москва образно похожа на черную дыру, куда всех затягивает. А Кремль спрятался во мраке за горизонтом событий.
Черные дыры. Kак умирают чёрные дыры?
RU - Участники проекта Event Horizon Telescope EHT, Телескоп горизонта событий , крупной сети радиотелескопов, впервые показали реальное изображение тени черной дыры - в центре галактики Messier 87 M87 в созвездии Девы. По всему миру прошло одновременно шесть больших пресс-конференций, где астрофизики сообщили о результатах работы международного проекта, в котором участвовали 200 ученых. Ученые объединили мощности восьми длинноволновых радиотелескопов в разных точках планеты в один большой радиотелескоп-интерферометр, поскольку сеть радиотелескопов лучше всего подходит для подобных наблюдений. Телескоп горизонта событий получил свое название в честь границы черной дыры - "горизонта событий", границы пространства-времени, которое окружает черную дыру и является так называемой точкой невозврата. Член научного комитета EHT Лучано Реццола из университета Гёте в Германии отметил, что полученное изображение подтверждает существование горизонта событий, то есть доказывает правильность общей теории относительности Альберта Эйнштейна.
Считается, что черная дыра представляет собой объект с такой сильной гравитацией, что даже свет не может отдалиться от него на бесконечное расстояние и из черной дыры не может выбраться никакое тело. Концепция таких объектов связана с современным взглядом на гравитацию, общей теорией относительности Эйнштейна, и представлением тяготения в ней через искривление пространства-времени. Это явление, предсказываемое общей теорией относительности Эйнштейна, никогда раньше не наблюдалось", - объясняет глава Научного совета EHT Хайно Фальке из университета Рэдбуд в Нидерландах. Именно она и позволила нам измерить гигантскую массу черной дыры в M87.
В 2016 году Кэролайн Маллари, одна из аспиранток Ханна, вдохновленная блокбастером режиссера Кристофера Нолана « Интерстеллар » решила научным методом проверить, действительно ли главный герой фильма смог бы выжить при падении в гигантскую вращающуюся черную дыру Гаргантюа, обладающую массой в 100 миллионов раз превосходящую солнечную. Сам фильм, напомним, был поставлен по книге нобелевского лауреата по астрофизике Кипа Торна. Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. Выдуманная черная дыра Гаргантюа из фильма «Интерстеллар» Даже прическу не помнет? Компьютерная модель показала, что при любых условиях объект падающий во вращающуюся черную дыру не будет испытывать бесконечно больших эффектов деформации при прохождении сквозь так называемый внутренний горизонт сингулярности — область черной дыры, избежать которой не удастся в любом случае. Более того, при определенных обстоятельствах воздействие этих эффектов будет настолько мало, что объект сможет без проблем пройти сквозь эту сингулярность, а в некоторых случаях и вовсе не заметить никакого воздействия со стороны. Маллари также обнаружила особенность, которая в полной мере не привлекала к себе внимания раньше: эффекты сингулярности в контексте вращающейся черной дыры приведут к стремительному увеличению циклов растягивания и сжатия объекта, падающего в ее центр. Однако исследовательница в своей работе отмечает, что в случае очень больших черных дыр, размером с ту же Гаргантюа, сила этих эффектов будет очень незначительной. Настолько незначительной, что ни сам космический аппарат, не живые существа, находящиеся на его борту, вероятнее всего, их даже не заметят.
После открытия в 2008 году черной дыры в центре Галактики следующий успех пришел в 2015-м, когда были зарегистрированы гравитационные волны от слияния черных дыр. Алексей Старобинский: «В XXI веке возник новый способ изучения черных дыр — с помощью гравитационно-волновой астрономии. Прибор состоит из двух зеркал, расстояние между которыми с большой точностью измеряется с помощью лазера. Гравитационные волны, испускаемые при слиянии черных дыр, изменяют геометрию пространства, а значит, и расстояние между зеркалами. То, что наблюдали исследователи, отлично описывается теорией: большинство событий — это слияние черных дыр в составе двойных систем. Мы видим, как две черные дыры вращаются вокруг друг друга по почти кеплеровской орбите, за исключением самой последней стадии перед слиянием, постепенно теряют энергию в виде гравитационных волн и в конце концов сливаются. Новым для астрономов оказалось только то, что типичная масса таких черных дыр — около 30—50 солнечных, а не 10, как ожидалось. Предстоит еще подумать о том, откуда взялись такие массивные звезды. Все, что мы видим, происходит очень-очень далеко. Ни в нашей Галактике, ни даже в Туманности Андромеды ни одного такого события наблюдать не удалось. Речь идет о расстояниях от 100 до 1000 мегапарсек, тогда как до ближайшего сверхскопления галактик в созвездии Девы от нашей «местной группы» всего 10 мегапарсек». Регистрация гравитационных волн была отмечена особой нобелевской премией в 2017-м. Наконец, в 2019 году достигнут последний потрясающий успех. Астрономы объединили в единую сеть восемь радиотелескопов, разбросанных по разным континентам. Будь эта система оптическим телескопом, она позволила бы из Москвы читать газету, раскрытую во Владивостоке. С помощью такого инструмента исследователи заглянули в сердцевину галактики М87. Изображение было настолько подробным, что впервые позволило разглядеть не только яркий диск вещества, падающего на черную дыру, но и саму виновницу торжества в его центре. Говоря точнее, астрономы увидели так называемую тень черной дыры, которая образуется из-за воздействия ее гравитации на фотоны. Если смотреть с Земли, их угловые размеры примерно одинаковы, и астрономы пытались разглядеть и запечатлеть оба эти объекта. Увы, наша родная черная дыра оказалось застенчивой, и получить ее изображение помешали облака пыли. А вот фото ее «сестры» из соседней галактики облетело научно-популярные СМИ. Читайте также Можно ли уничтожить черную дыру? Парадоксы и перспективы Даже далекие от физики люди слышали, что существование черных дыр порождает парадоксы. При этом сам факт, что из-под гравитационного радиуса нет пути назад, не более парадоксален, чем банальные утверждения «человек смертен» или «прошлого не изменишь». На самом деле, парадоксы возникают не в самой теории Эйнштейна, а на стыке этой теории и квантовой механики. Например, куда-то девается информация об угодивших в черную дыру материи и излучении, а квантовая механика такой потери не допускает. Алексей Старобинский реагирует на упоминание о парадоксах сдержанным смешком: «Если буквально, можно сказать, наивно применять аксиомы квантовой механики, то возможно прийти к выводу, что информация вроде бы должна сохраняться, а потому вокруг горизонта событий возникнет огненная стена — слой частиц с планковской то есть очень высокой энергией. Однако ничего подобного при слиянии черных дыр мы не наблюдаем. Мы не видим ни высокоэнергетичных частиц, ни незатухающего сигнала гравитационных волн после момента слияния. Я специально спрашивал об этом тех, кто участвует в экспериментах. А вот некоторые теоретики все это видят, поскольку берут чужие экспериментальные данные, но не чувствуют, какой колоссальной работы над погрешностями измерений требует правильная обработка этих данных. Я бы сказал, что парадоксы возникают, только если квантовую механику применять к тому, что происходит вокруг черной дыры, мягко говоря, немножко тупо». Может ли изучение черных дыр принести физике что-то еще, кроме очередного — с огромной точностью — подтверждения правоты Эйнштейна? Старобинский надеется, что да: «Сейчас астрономия большей частью работает на себя, но кое-что от нее может перепасть и фундаментальной физике. Открытие черных дыр разнообразной массы — это похоже на описание все новых видов животных в биологии: все это остается в рамках фундаментальных представлений. Мы лишь подтверждаем ОТО в том, что касается гравитации, и Стандартную модель с точки зрения физики элементарных частиц. Однако при этом астрономия четко говорит нам, что существует темная материя. Мы не знаем, из чего она составлена. Хотя наиболее популярная гипотеза — наличие новых частиц вне Стандартной модели; существует теоретическое предсказание, что частично она может состоять из первичных черных дыр. Предсказан даже диапазон их масс — порядка массы астероида. Такие черные дыры можно искать, но пока их не нашли. Сухой остаток таков: на сегодняшний день новые астрономические открытия лишь подтверждают фундаментальную физическую картину мира.
Did they find a BlackHole or the Eye of Sauron? Немного улучшил фото чёрной дыры, убрал шумы. Первое настоящее изображение черной дыры pic. Picture 1: An actual Black Hole picture discovered today. Можете делать выводы.
Гаргантюа черная дыра
Причина в том, что мы наблюдаем за объектом со стороны одного из полюсов, а не с экваториальной части. Диск материи вокруг M87 просто скрыт с нашей позиции. Аналогия элементарна — если смотреть на Сатурн со стороны полюса, то диск не будет пересекать экваториальную часть. Но это еще не все. Мы не видим черную дыру под прямым углом и это причина еще одного из значительных отличий. Черная дыра M87 имеет более яркие акценты в левой нижней части. Это косвенное доказательство, что скорее всего черная дыра вращается. Материя вокруг черной дыры тоже вращается, при этом пространство-время само по себе будет обернуто вокруг черной дыры.
Это значит, что материал, двигающийся в нашем направлении, выглядит ярче, тогда как та материя, что удаляется от нас, выглядит тусклее.
Здесь есть две особенные звезды, для которых гравитационное линзирование не действует. Одна из них расположена прямо над северным полюсом Гаргантюа, другая — прямо под южным. Это аналоги Полярной звезды, которая расположена прямо над Северным полюсом Земли. Я нарисовал пятиконечные звездочки рядом с первичными красная звездочка и вторичными желтая изображениями полярных звезд Гаргантюа. С Земли кажется, будто все звезды циркулируют вокруг Полярной звезды — поскольку мы вращаемся вместе с Землей. Аналогично по мере движения камеры по орбите вокруг дыры все первичные изображения звезд рядом с Гаргантюа циркулируют вокруг первичных изображений полярных звезд, но пути их движения например, две замкнутые красные кривые сильно искажены пространственным вихрем и гравитационным линзированием. Тем же образом вторичные изображения звезд циркулируют вокруг вторичных изображений полярных звезд например, вдоль двух желтых кривых. Почему в случае невращающейся черной дыры рис.
По одной из уже существующих версий, в космосе есть «неработающие» пульсары, которые лишились возможности вращаться. Они, как считается, образуются в двойных звездных системах. Если одна, более массивная, звезда в процессе сверхновой отталкивает более мелкого компаньона и остается одна, она со временем теряет материал, замедляется и в конце концов не излучает сигнал, по которому ее можно было бы обнаружить. Но разве могут все системы в центре галактики быть двойными и все - пойти по одному пути развития? Черная дыра «на обед» Фото: Shutterstock. Гипотетически предполагается, что во Вселенной существуют так называемые первичные черные дыры. Обычные черные дыры образуются как нейтронные звезды — в результате сверхновых.
Измерения позволили протестировать общую теорию относительности и получить очередное доказательство существования черных дыр. Черные дыры прежде оставались гипотетическими объектами, хотя у астрономов и не оставалось сомнений в том, что они существуют. Ранее было получено большое количество косвенных свидетельств их существования, начиная от наблюдений тесных двойных систем и до гравитационных волн. Первое научно обоснованное изображение черной дыры получил французский астрофизик Жан-Пьер Люмине в 1979 году. Однако непосредственных наблюдений черных дыр до сих пор не существовало - черные дыры невелики, но при этом сильно удалены. Кроме этого, детальные наблюдения помогут проверить экзотические гипотезы, например гипотезу о кротовых норах - гипотетическую особенность пространства-времени, представляющую собой как бы тоннель в пространстве. Есть версии, что с помощью таких порталов можно перемещаться в "другие миры". Тема подобных путешествий обыгрывается в научно-фантастическом фильме "Интерстеллар". Там кротовая нора помогла героям преодолеть огромные межзвездные расстояния.
Самая яркая галактика Вселенной оказалась "каннибалом", выяснили в НАСА
Согласно Научным Данным Она Образовалась Из Тёмной Звезды в Тёмные Века Во Времена Когда Не Было Времени и Если Залетит в Нашу Солнечную Систему Нас Ждут Бо. огромной чёрной дырой. Черная дыра Гаргантюа, частично скрытая планетой Миллер; на переднем плане — модуль «Рейнджер», идущий на снижение. По расчетам, черная дыра в тысячи раз больше, чем в Млечном пути, и насчитывает не 0,1% от массы балджа галактики, а все 59%. Да, вокруг сверхмассивной черной дыры по имени Гаргантюа обращается диск — это останки разорванных приливными силами звезд и планет, захваченных полем тяжести космического монстра.
Новости по теме
- Черные дыры. Kак умирают чёрные дыры?
- Гаргантюа: самая большая Солнечная система во Вселенной | Звездный исследователь | Дзен
- Познание тьмы: как наука проникает в тайны черных дыр
- Сверхмассивная чёрная дыра — Википедия