– Серебро, золото, медь магнит не притягивает. Только сталь, железо, чугун. Рассмотрим, почему кусок железа притягивается к магниту. Поскольку мы регулярно подвергаемся воздействию магнитов, которые, как мы знаем, притягивают железо, возникает вопрос: можно ли извлечь железо из крови с помощью мощного магнита? В атомах магнита частицы обладают магнитным моментом, который и порождает силу, притягивающую вещества с высокой магнитной восприимчивостью, каковыми являются металлы. тем хуже притягиваются.
Почему магнит притягивает железо? | Объясни мне, как ребенку!
Давайте представим на мгновение малюсенькое , что магниты работают так же, как говорят магнитотерапевты. Предположим, что ученые ошибаются. А ещё предположим, у вас травма на животе, и вы спите на спине. Внизу вы расположили удобный «магнитик» по совету врача, чтобы быстрее выздороветь. Поскольку магнитные терапевты говорят нам, что магниты притягивают кровь, вся жидкость будет тянуться к вашей спине, к магнитам и подальше от места травмы. Она будет собираться в задней части вашего тела, ближе всего к магнитам. Вместо того, чтобы улучшить кровоток к травме, магниты уменьшат его. Подобным образом магниты «переместили» бы всю кровь из одной части мозга в другую.
Это не очень хорошая идея, так как известно, что мозговые клетки могут жить без кислорода примерно 5 минут. Затем возникает необратимое повреждение головного мозга. И все же некоторые люди каждую ночь спят на этих «кровососущих» магнитах. Обратите внимание, если магниты действительно притягивают кровь, это не улучшит кровообращение. Кровь просто будет тянуться к магнитам, и, если они будут достаточно сильными, она останется в одном месте. В итоге кровь не сможет вернуться к сердцу и легким, чтобы получить больше кислорода, потому что будет удерживаться магнитами, лежащими под спиной. Каждая клетка в вашем теле умрет.
Вы не проснетесь. Предположим теперь, что магниты могут каким-то образом, вопреки научным доказательствам, действительно влиять на железо и усиливать поток крови в кровеносных сосудах. Вместо того, чтобы тянуть железо и, следовательно, кровь, прямо к магнитам, давайте притворимся, что магнитное поле толкает железо в сторону, скажем направо. Оно не притягивает железо как обычные магниты , но отклоняет его в определенном направлении. Этот дополнительный «нажим» ускоряет поток крови и увеличивает микроциркуляцию. К сожалению, даже эта идея не имеет смысла, по следующей причине. Артерии доставляют кровь от сердца к клеткам, а вены действуют как раз наоборот — из клеток обратно в сердце.
Поскольку кровоток является сбалансированным и равным в обоих направлениях, как может статическое магнитное поле одновременно усиливать кровоток в двух противоположных направлениях? Как магниты могут увеличить кровоток в одном направлении в артерии и в противоположном направлении в соседней и параллельной вене?
Магнитное притяжение также может возникать между магнитом и другими магнитными материалами, такими как никель или кобальт. Это объясняется тем, что эти материалы также содержат свободные электроны и магнитные домены, которые могут ориентироваться в магнитном поле и создавать притягивающую силу. Таким образом, притяжение магнита к железу вызвано взаимодействием магнитного поля магнита с свободными электронами и магнитными доменами внутри железа.
Когда магнитное поле магнита воздействует на железо, свободные электроны в железе начинают двигаться и ориентироваться вдоль магнитного поля, создавая магнитизацию в железе и притягивая его к магниту. Это явление можно объяснить еще более подробно. Внутри атомов железа находятся электроны, которые обращаются вокруг ядра. Каждый электрон имеет магнитный момент, то есть свой собственный магнитный полюс. Обычно эти магнитные полюса электронов направлены случайным образом, что делает железо немагнитным.
Однако, когда магнит подносится к железу, его магнитное поле начинает взаимодействовать с магнитными полюсами электронов в железе. Под действием магнитного поля, электроны начинают ориентироваться вдоль линий магнитного поля, стараясь минимизировать свои энергетические потери. В результате, большинство электронов в железе ориентируются таким образом, чтобы их магнитные полюса совпадали с направлением магнитного поля магнита. Такое выстраивание магнитных полюсов электронов приводит к созданию областей, называемых магнитными доменами. Каждый магнитный домен состоит из множества электронов, у которых магнитные полюса совпадают между собой.
Но, вспомнив теорию, мы сделаем уже совсем иное заключение: «Да, кольцо можно намагнитить, так что силовые линии замкнутся, а элементарные магнитики выстроятся друг за другом по кругу». Такой вывод является выдающимся успехом теории. Она дает нам возможность понять то, что нельзя было бы постичь другим способом. Одним из важнейших достижений теории является то, что она придает физическому понятию или идее, в нашем случае — намагниченности, новый смысл.
При этом она поднимается выше своей обычной роли толкователя известных или предсказателя новых фактов и становится способной проникать в самую суть явлений. Такая теория приводит к существенно более глубокому пониманию фактов и заслуживает похвалы, адресованной киплинговскому слоненку: «Ты не смог бы сделать всего этого, будь у тебя обычный короткий нос». Немногие теории сумели подняться на такую высоту — или лучше сказать, немногие сумели продемонстрировать свои успехи столь четко, как теория магнетизма[77]. Если оно действительно намагничено, то в месте разреза появятся полюсы».
Такой опыт несложно выполнить, и, если кольцо было приготовлено надлежащим образом, мы действительно обнаружим полюсы, создающие сильное магнитное поле. Подобные кольцевые магниты в наше время весьма распространены и очень важны для техники, хотя они изобретены вовсе не с целью проверки теории. Железные сердечники трансформаторов также часто конструируются в виде замкнутых колец, чтобы в них создавались замкнутые силовые линии. Такой характер намагничивания очень существен для хорошей работы трансформатора, а сами трансформаторы необходимы в современной технике для передачи электроэнергии на расстояние.
Несколько позже мы узнаем еще об одной возможности проверки намагниченности кольца, которая вовсе не требует разрезания его на части. Вопрос к теорий магнетизма. Теперь мы можем вернуться к вопросу о способе сохранения магнитов. Подковообразные магниты часто снабжаются «башмаком» — бруском мягкого железа, который замыкает их полюсы.
Такие же «башмаки» используются и для сохранения свойств прямых магнитов. В обоих случаях магниты создают в мягком железе временное намагничивание, и, что очень существенно, возникает замкнутое намагниченное кольцо, аналогичное рассмотренному выше. Основываясь на нашей теории, мы вправе ожидать, что «башмак» действительно должен давать полезный эффект. Вообще говоря, схемы с изображением различным образом выстроенных элементарных магнитиков помогают нам понять состояние намагниченности материала самых разнообразных образцов.
Однако не следует забывать, что, хотя эти картинки выглядят весьма правдоподобно, они все же далеки от реальной действительности. Магнитные силовые линии в статоре электромотора, изготовленном из мягкого железа. Задача 5. Вопросы по теории магнетизма а Опишите, что произойдет, когда, пытаясь получить изолированные «полюсы», вы разрежете намагниченный стальной брусок на небольшие куски.
Воспользовавшись маленькими стрелками для обозначения элементарных магнитиков, или, точнее, доменов, которые в настоящее время считаются основными элементарными единицами магнетизма, покажите, как этот эксперимент подтверждает «теорию» магнетизма. Ответы, где это возможно, дополните схемами. Объясните, почему. Объясните, по какой причине.
Дайте объяснение. В каких условиях это возможно? Могут ли эти «башмаки» действительно помочь сохранить магниты в намагниченном состоянии? Из какого материала они должны быть изготовлены?
Нарисуйте схему, иллюстрирующую роль последних. Имеется ли какой-нибудь разумный смысл в утверждении, что кольцо «намагничено»? Замечено, что брусок нагрелся. Такое нагревание возникает благодаря ряду эффектов, один из которых заключается в перемагничивании бруска магнитным полем переменного тока.
Какое ожидается различие в нагревании мягкого железа и твердой стали? Объясните, почему таким способом можно размагнитить магнит. Ответ проиллюстрируйте рисунком или чертежом. Демонстрационный прибор для изучения намагничивания железных или стальных образцов.
Образец помещается в намагничивающую катушку А, через которую пропускается электрический ток. В процессе намагничивания образец создает магнитное поле, которое отклоняет электронный луч вверх или вниз. Катушка А также создает внешнее магнитное поле. Чтобы предотвратить действие этого поля на электронный луч, с другой стороны электронно-лучевой трубки помещается «компенсирующая» катушка В, через которую проходит тот же самый ток.
Магнитное поле этой катушки нейтрализует поле катушки А в области, где проходит электронный луч. Перемещение луча вверх и вниз позволяет следить за изменением намагниченности образца. Электронный луч отклоняется также вправо и влево электрическим полем между пластинками Р1 и Р2, связанными с сопротивлением R, через которое проходит намагничивающий ток. Согласно закону Ома, разность потенциалов на его концах изменяется в соответствии с силой тока.
Так же меняется и поле, действующее на образец. Поэтому величина горизонтального отклонения луча является мерой напряженности намагничивающего поля. Если катушка питается постоянным током, который постепенно увеличивают с помощью реостата, то возрастание намагниченности образца можно заметить по смещения светящегося пятна на экране трубки. Если же катушка включена в сеть переменного тока, то достаточно держать реостат в одном определенном положении.
Во время каждого цикла намагничивания электронный луч вычерчивает одинаковые кривые, и это происходит так быстро и столь часто, что мы видим на экране неподвижное изображение. Экспериментальное изучение стадий намагничивания Мы можем исследовать, как намагничивается металлический брусок, поместив его внутрь соленоида и постепенно увеличивая ток в обмотке. Будем считать, что напряженность магнитного поля внутри соленоида прямо пропорциональна току почему это так, объясняется ниже , так что величину силы тока можно принять за меру напряженности намагничивающего поля. Величину же намагниченности самого бруска будем измерять по производимому им действию на небольшую компасную стрелку или пучок электронов в электронно-лучевой осциллографической трубке.
Мы можем плавно менять ток с помощью реостата или включить соленоид в сеть переменного тока, который 60 раз в секунду будет менять намагниченность бруска. Подадим на вертикальные пластины осциллографической трубки электрическое поле, пропорциональное величине намагничивающего тока, которое развернет электронный луч горизонтально 60 раз в секунду, а намагничиваемый брусок расположим таким образом, чтобы его магнитное поле в то же самое время отклоняло бы электронный луч вверх или вниз в зависимости от направления намагничивания. При этом электронный луч вычертит на экране трубки замкнутую кривую, представляющую собой график намагничивания нашего бруска, в котором величина горизонтального отклонения отвечает напряженности магнитного поля, а вертикальное отклонение соответствует намагниченности. Если проводить опыт с первоначально ненамагниченным образцом, то при увеличении тока в соленоиде график намагничивания мягкого железа будет представлять собой кривую, в которой различаются три участка.
В переменном поле мягкое железо намагничивается до насыщения, затем намагниченность падает до нуля, снова достигает насыщения, но уже в обратном направлении и т. Закаленная же сталь дает характерную петлю, т. Образец частично сохраняет намагниченность даже тогда, когда само намагничивающее поле упало до нуля. Такая инерция намагниченности по отношению к намагничивающему полю носит название «гистерезис».
Чем больше петля, тем сильнее «трение», которое испытывают крошечные элементарные магнитики, тем значительнее нагревание образца в каждом цикле намагничивании. Теперь вам понятно, почему намагниченный брусок размагничивается, когда его помещают в соленоид с переменным током и медленно вынимают оттуда. Переменное магнитное поле 60 раз в секунду меняет намагниченность бруска. По мере извлечения магнита из соленоида он испытывает все более и более слабое воздействие намагничивающего поля, так что петля намагниченности становится все меньше и меньше.
Цикл за циклом эти петли сжимаются так что вся картина становится похожей на разрезанную луковицу до тех пор, пока они не сойдутся в точку в центре графика, что соответствует полному размагничиванию. Кривые намагничивания. Более современная теория. Магнитные домены До сих пор мы не делали никаких определенных предположений о размерах элементарных магнитиков и не сказали ни слова о том, как они выглядят.
В последние годы были получены убедительные доказательства, что эти магнитики представляют собой не отдельные молекулы, а довольно большие группы металлических кристаллов. Эти группы, получившие название «домены», выглядят очень маленькими, когда рассматриваешь их под микроскопом, но в сравнении с отдельными атомами они кажутся колоссальными скоплениями. Конечно, домены можно разделить на еще меньшие магнитики и постепенно дойти до отдельных атомов. Так что настоящими элементарными магнитиками мы по-прежнему должны считать атомы[78].
Границы домена можно увидеть в микроскоп, если посыпать поверхность намагниченного предмета очень тонким железным порошком, точно так же как при проверке литья на трещины. Весь металл внутри домена намагничивается только в одном направлении — обычно вдоль одной из главных кристаллических осей. В ненамагниченном металле намагниченность отдельных доменов равновероятно направлена по или против любой из осей кристалла, по-видимому, образуя пространственные циклические доменные семейства. При намагничивании металла происходят следующие два типа изменений: а Некоторые домены увеличиваются в размере за счет соседних, добавляя в свой единый блок атомы из других блоков.
Растут как раз те домены, которые были намагничены в направлении, близком к направлению намагничивающего поля. Если поле слабое, то эти изменения невелики и обратимы: вся картина целиком восстанавливается при снятии поля стадия 1 на фиг. Более сильные поля производят необратимые изменения границ доменов. Удачно ориентированные домены вырастают в размерах еще больше, и мы получаем сильный магнит стадия 2.
Размагничивание стального бруска. Напомним, что намагниченность доменов направлена вдоль осей кристаллов металла, а не внешних контуров металлического бруска, которые указывают лишь направление наиболее просто осуществимого намагничивания. Атомы домена, естественно, стараются выстроиться в наиболее удобном для них направлении. Однако приложенное внешнее поле может оказаться не параллельным ни одной из кристаллических осей.
Тогда требуются очень большие поля, чтобы повернуть направления намагниченности удачно ориентированных доменов ближе к направлению магнитного поля стадия 3. Такой характер изменения менее прост, чем мы привыкли думать. Магнитные домены в металлическом бруске на различных стадиях намагничивания. Это упрощенное схематическое изображение иллюстрирует механизм изменений, происходящих с доменами.
Обозначения направления намагниченности, перпендикулярной плоскости чертежа: — намагниченность направлена на наблюдателя; — намагниченность направлена от наблюдателя. А что же в действительности? Привлекая все новые и новые предположения в форме подробных рассказов о доменах для объяснения наблюдаемых явлений, мы, кажется, снова рискуем испортить свою научную репутацию. Однако для защиты нашей точки зрения обратимся к экспериментальным наблюдениям узоров, образованных железным порошком на поверхности намагниченного образца, которые показывают границы между доменами.
Можно заметить, что эти узоры меняются по мере намагничивания бруска, демонстрируя увеличение одних доменов за счет других. Кто видел это, тот, безусловно, согласится, что опыт подтверждает нашу теорию. Опыт, позволяющий услышать изменения доменов. Известна и другая замечательная демонстрация изменений, происходящих с доменами, которые слишком малы, чтобы их можно было бы увидеть непосредственно, но хорошо регистрируются электрическими методами.
Намотаем вокруг железного образца небольшую катушку и присоединим ее концы к усилителю, чтобы обнаружить очень слабые изменения наведенного потенциала, связанного с изменением намагниченности образца. Кроме того, к выходу усилителя подключим громкоговоритель. Начнем намагничивать образец, приближая к нему магнит, и мы услышим странный шорох, напоминающий шум песка, падающего на барабан. В действительности этот шорох представляет собой быструю последовательность коротких щелчков, как раз таких, какие можно было бы ожидать от бесчисленного множества доменных скачков.
Если бы в намагничивании участвовали не домены, а отдельные молекулы, то щелчки были бы неизмеримо слабее и слишком частыми, чтобы произвести такой шум. Таким образом, этот хорошо различимый шорох свидетельствует о том, что домены представляют собой большие группы молекул. С недавнего времени мы стали объяснять происхождение этой последовательности щелчков несколько иначе. Раньше мы думали, что каждый щелчок связан с внезапным изменением направления намагниченности домена.
Теперь мы знаем, что число таких щелчков гораздо больше количества доменов в образце. По-видимому, каждый щелчок связан с изменением границ домена, т. В этом небольшом разделе физики мы показали, что теория является полезным наставником экспериментатора и мудрым другом научного исследователя. Если вы спросите: «Верна ли она?
Затем он добавит: «По крайней мере частично она верна». Некоторые из теоретических представлений, безусловно, верны, в чем вы сами можете убедиться, поставив опыты. Если же часть из них, как, например, представления о магнетизме атомов, покажутся вам несколько фантастичными, то, прежде чем спрашивать об их реальности, следовало бы ответить на вопрос: чем они полезны? Тем не менее как наша научная любознательность, так и романтическая страсть к атомам побуждают нас узнать, что происходит внутри домена.
И мы добиваемся успеха в этих исследованиях. Пропуская пучки отдельных атомов через неоднородные магнитные поля, мы обнаруживаем, что некоторые атомы на самом деле представляют собой магниты фиг. Некоторые атомы ведут себя как маленькие магниты. Для исследования их магнитных свойств используются неоднородные магнитные поля.
Опыт по измерению магнитного момента атомов. Электрически нейтральные атомы испускаются в вакуум, проходят через неоднородное магнитное поле и отклоняются в область наибольшей напряженности поля. Далее атомы попадают на чувствительную фотопленку, образуя на ней пятно. Это говорит о том, что атомы действительно представляют собой магниты, но их ориентация загадочным образом ограничена тремя направлениями, или, другими словами, «квантована».
Магнитные свойства атомов. Не забывайте, что изображения атомов на этом рисунке весьма фантастичны и очень далеки от действительности. Электрон, движущийся по некоторой «орбите», создает магнитное поле наподобие электрического тока, обтекающего виток провода, и наделяет при этом свой атом магнитными свойствами. Кроме того, электрон имеет еще и собственное вращение, в результате которого создается добавочное магнитное поле.
Однако лишь немногие атомы обладают магнитными свойствами, поскольку у большинства из них магнитные поля, создаваемые множеством электронов, компенсируют друг друга. Мы умеем, кроме того, заставлять атомы, помещенные в сильные магнитные поля, испускать свет, исследуя который можно еще больше узнать об их магнитных свойствах. Наконец, мы убеждаемся, что электроны, некоторые атомные ядра и даже не обладающий электрическим зарядом нейтрон ведут себя как крошечные магнитики. Каждый из них создает вполне определенное магнитное поле, которое мы связываем с так называемым механическим «спином» — вращательным моментом, присущим частице.
Эти магнитные свойства серьезно помогают нам разобраться в структуре атомного ядра. Недавно проведенные опыты по отражению пучков нейтронов от магнитных материалов доказывают реальность существования границ доменов. Эти опыты дают нам возможность подсчитать действительное число доменов по измерению отражения нейтронного пучка. Таким образом, старая теория магнетизма и новейшая экспериментальная ядерная физика, возникновение которых разделено целым столетием, связываются друг с другом воедино.
Рассказывая эти подробности о поведении атомов, мы хотели просто сообщить новые результаты и не ставили перед собой цели экспериментально или каким-нибудь другим путем обосновать их реальность. Поэтому вам следует принять их на веру как интересные факты и как подтверждение того, что физики сумели довести до тонкостей свою широко применимую теорию магнетизма.
Это электромагниты. Магнитное поле — это периферийная область магнита, обладающая магнитной силой. Магнетизм — это сила, с которой магниты притягиваются или отталкиваются друг от друга.
Направление этих электронов выровнено в случае стержневого магнита. В большинстве немагнитных металлов одинаковое число электронов обычно вращается в противоположных направлениях. Таким образом магнетизм отменяется. Вот почему немагнитные металлы или материалы, такие как ткань или бумага, не обладают магнитными свойствами. Интересно отметить, что если оставить или потереть скрепки о магнит, они какое-то время будут проявлять магнитные эффекты. Это индуцированные магнитные поля и магнитные свойства.
Когда металл нужно намагнитить, требуется другое более сильное магнитное вещество с мощным существующим магнитным полем. Это магнитное поле создает магнитную силу, которая, в свою очередь, вращает электроны в одном направлении, увеличивая магнетизм металла. Итак, металлы магнитятся благодаря свободным электронам. Доказано, что магниты имеют два полюса: южный и северный. Противоположные полюса притягиваются друг к другу, тогда как одни и те же полюса, как известно, отталкиваются. В другом методе несколько веществ можно превратить в магниты с помощью электрического тока.
Этот магнетизм временный. Когда электричество проходит через катушку провода, создается магнитное поле. Это магнитное поле вокруг катушки с проволокой должно исчезнуть, как только отключится электричество. Их называют электромагнитами. Магниты, используемые для разделения различных типов металлов Магниты чаще всего используются при переработке промышленного оборудования. Они используются для разделения магнитных и немагнитных материалов.
Магниты в основном используются в процессе переработки. Сильные промышленные магниты используются для идентификации и разделения разные металлы. Эти магнитные сепараторы предназначены для отделения предметов из цветных металлов, таких как алюминий, в банках с газировкой. Эти бутылки или банки удаляются из кучи других черных металлов, таких как железо.
Расплавленное железо против магнита: увлекательный эксперимент
Дак и я не сомневаюсь что магнит притягивает железки и могу померить параметры этого притяжения. В атомах магнита частицы обладают магнитным моментом, который и порождает силу, притягивающую вещества с высокой магнитной восприимчивостью, каковыми являются металлы. Основная причина, почему железо притягивается к магниту, заключается в его атомной структуре. Почему магнит притягивает металл? Магниты привлекают любые металлы, которые сделаны из железа или металлов с железом в них. 2) Почему магнит притягивает только предметы из железа, никеля и кобальта?
Какие металлы, кроме железа, притягиваются магнитом?
Почему магнит притягивает металл ? | Магнит притягивает только железо; · Магнит может притягивать предметы на расстоянии, благодаря магнитному полю. |
Почему у магнита два полюса? | Но раз к магниту притягиваются все вещества, то исходный вопрос можно переформулировать так: «Почему же тогда именно железо так сильно притягивается магнитом, что проявления этого легко заметить в повседневной жизни?». |
3 разных типа магнитов и их применение | | 2) Почему магнит притягивает только предметы из железа, никеля и кобальта? |
Почему у магнита два полюса? | Наука - 24 декабря 2020 - Новости Новосибирска - |
как Поле действует на объект? например магнит притягивает железо почему это происходит
Почему магнит притягивает железо, а не алюминий? Железо притягивается к магнитам из-за его высокопроводящей природы. Почему магнит притягивает лишь определенные вещества? В атомах магнита частицы обладают магнитным моментом, который и порождает силу, притягивающую вещества с высокой магнитной восприимчивостью, каковыми являются металлы. Сила притяжения не такая, как в случае с углеродистой сталью, чтобы почувствовать притяжение потребуется неодимовый магнит. Может ли мощный магнит притянуть железо в нашей крови? вот говорят, подобное тянется к подобному, а как же тогда "противоположное притягивается" например магнит?
Бестопливная миниэлектростанция на постоянных магнитах
- Суть магнита. Почему магниты магнитят. Природа и принцип действия магнитов и электромагнитов.
- как Поле действует на объект? например магнит притягивает железо почему это происходит
- Почему магнит притягивает металл ?
- Глава 34. Магнетизм. Опыт и теория
- Виды постоянных магнитов
- Что такое магнит и магнетизм?
ПОЧЕМУ МАГНИТ ПРИТЯГИВАЕТ ЖЕЛЕЗО
В этом случае при внесении вещества в магнитное поле к собственному движению электронов добавится движение электронов под действием поля. Это движение электронов вызовет дополнительный ток, магнитное поле которого будет направлено против внешнего поля. Поэтому диамагнетик будет слабо отталкиваться от расположенного рядом магнита. Итак, если подойти с научной точки зрения к вопросу, какие металлы не магнитятся, ответ будет — диамагнитные. Распределение парамагнетиков и диамагнетиков в периодической системе элементов Менделеева Магнитные свойства простых веществ периодично изменяются с увеличением порядкового номера элемента. Вещества, не притягивающиеся к магнитам диамагнетики , располагаются преимущественно в коротких периодах — 1, 2, 3. Какие металлы не магнитятся? Это литий и бериллий, а натрий, магний и алюминий уже относят к парамагнетикам. Вещества, притягивающиеся к магнитам парамагнетики , расположены преимущественно в длинных периодах периодической системы Менделеева — 4, 5, 6, 7.
Однако последние 8 элементов в каждом длинном периоде также являются диамагнетиками. Кроме того, выделяют три элемента — углерод, кислород и олово, магнитные свойства которых различны у разных аллотропных модификаций. К тому же называют еще 25 химических элементов, магнитные свойства которых установить не удалось вследствие их радиоактивности и быстрого распада или сложности синтеза. Магнитные свойства лантаноидов и актиноидов все они являются металлами меняются незакономерно. Среди них есть и пара- и диамагнетики. Выделяют особые магнитоупорядоченные вещества — хром, марганец, железо, кобальт, никель, свойства которых изменяются незакономерно. Какие металлы не магнитятся: список Ферромагнетиков, то есть металлов, которые хорошо магнитятся, в природе существует всего 9. Это железо, кобальт, никель, их сплавы и соединения, а также шесть металлов- лантаноидов: гадолиний, тербий, диспрозий, гольмий, эрбий и тулий.
Металлы, притягивающиеся только к очень сильным магнитам парамагнетики : алюминий, медь, платина, уран. Поскольку в быту не встречаются настолько большие магниты, которые бы притянули парамагнетик, а также не встречаются металлы-лантаноиды, можно смело утверждать, что все металлы, кроме железа, кобальта, никеля и их сплавов не будут притягиваться к магнитам. Итак, какие металлы не магнитятся к магниту: парамагнетики: алюминий, платина, хром, магний, вольфрам; диамагнетики: медь, золото, серебро, цинк, ртуть, кадмий, цирконий. В целом можно сказать, что черные металлы притягиваются к магниту, цветные — не притягиваются. Если говорить о сплавах, то сплавы железа магнитятся. К ним относят в первую очередь сталь и чугун. К магниту могут притянуться и драгоценные монеты, поскольку они изготовлены не из чистого цветного металла, а из сплава, который может содержать небольшое количество ферромагнетика. А вот украшения из чистого цветного металла к магниту не притянутся.
Какие металлы не ржавеют и не магнитятся? Это обычная пищевая нержавейка, золотые и серебряные изделия. Август 2021. Магниты — это материалы, которые создают магнитные поля, которые привлекают определенные металлы. У каждого магнита есть северный и южный полюс. Обратные полюса привлекают, в то время как полюса отталкиваются. В то время как большинство магнитов изготовлены из металлов и металлических сплавов, ученые разработали способы создания магнитов из композиционных материалов, таких как магнитные полимеры. Что создает магнетизм?
Магнетизм в металлах создается неравномерным распределением электронов в атомах некоторых металлических элементов.
Вы можете использовать эти идеи, чтобы показать, как магнетизм работает с повседневными предметами. Например, если вы поместите неодимовый магнит рядом со стальной отверткой и переместите его вверх, вниз по валу, а затем удалите магнит, отвертка может сохранить в нем некоторый магнетизм. Это происходит из-за взаимодействующих магнитных полей между двумя объектами, которые создают силу притяжения, когда они нейтрализуют друг друга. Это определение «отталкивать и притягивать» справедливо во всех случаях использования магнитов и магнитных полей. Следите за тем, какие направления соответствуют отталкиванию и притяжению. Отталкивающая сила магнита Противоположности притягиваются.
Чтобы объяснить, почему магниты отталкиваются друг от друга, северный конец одного магнита будет притягиваться к югу от другого магнита. Северный и северный концы двух магнитов, а также южный и южный концы двух магнитов будут отталкивать друг друга. Магнитная сила является основой электродвигателей и привлекательных магнитов для использования в медицине, промышленности и исследованиях. Чтобы понять, как работает эта сила отталкивания, и объяснить, почему магниты отталкивают друг друга и притягивают электричество, важно изучить природу магнитной силы и множество форм, которые она принимает в различных явлениях в физика. Расчет магнитных свойств Магнитная индукция поля Земли составляет 0,5Ч10—4 Тл, тогда как поле между полюсами сильного электромагнита — порядка 2 Тл и более. Магнитное поле, создаваемое какой-либо конфигурацией токов, можно вычислить, пользуясь формулой Био — Савара — Лапласа для магнитной индукции поля, создаваемого элементом тока. Расчет поля, создаваемого контурами разной формы и цилиндрическими катушками, во многих случаях весьма сложен.
Ниже приводятся формулы для ряда простых случаев. Магнитная индукция в теслах поля, создаваемого длинным прямым проводом с током I ампер , на расстоянии r метров от провода равна Индукция в центре кругового витка радиуса R с током I равна в тех же единицах : Плотно намотанная катушка провода без железного сердечника называется соленоидом. Во всех случаях магнитное поле тока направлено перпендикулярно этому току, а сила, действующая на ток в магнитном поле, перпендикулярна и току, и магнитному полю. Поле намагниченного железного стержня сходно с внешним полем длинного соленоида с числом ампер-витков на единицу длины, соответствующим току в атомах на поверхности намагниченного стержня, поскольку токи внутри стержня взаимно компенсируются рис. По имени Ампера такой поверхностный ток называется амперовским. Напряженность магнитного поля Ha, создаваемая амперовским током, равна магнитному моменту единицы объема стержня M. Если в соленоид вставлен железный стержень, то кроме того, что ток соленоида создает магнитное поле H, упорядочение атомных диполей в намагниченном материале стержня создает намагниченность M.
Величина c у парамагнитных материалов немного больше нуля, а у диамагнитных — немного меньше. Лишь в вакууме и в очень слабых полях величины c и m постоянны и не зависят от внешнего поля. Зависимость индукции B от H обычно нелинейна, а ее графики, т. Магнитные свойства вещества весьма сложны, и для их глубокого понимания необходим тщательный анализ строения атомов, их взаимодействий в молекулах, их столкновений в газах и их взаимного влияния в твердых телах и жидкостях; магнитные свойства жидкостей пока наименее изучены. Магнитная сила между проводами Для токов, которые перемещают заряды по проводам, магнитная сила может быть определена как притягивающая или отталкивающий, основанный на расположении проводов относительно друг друга и направлении тока движется. Для токов в круглых проводах вы можете использовать правую руку, чтобы определить, как возникают магнитные поля. Это позволяет определить, насколько петли привлекательны или отталкивают друг друга.
Это два различных силовых поля, и одно из них относится к тем физическим объектам, которые мы называем магнитами, а другое создается обычными электрическими зарядами. Опыт 6. Магнитные поля. Чтобы лучше познакомиться с природой магнитного поля и расположением магнитных силовых линий, проведите опыты с компасной стрелкой. Как бы ни была помещена стрелка, она устанавливается в направлении магнитного поля. Положите магнит и рядом с ним небольшой компас на лист бумаги. Перемещайте компас в направлении, указываемом его стрелкой. При этом ваш компас будет двигаться вдоль магнитной силовой линии.
Отмечайте путь компаса на бумаге. Для этого поставьте карандашом точку прямо против острия компасной стрелки. Передвиньте компас дальше, так, чтобы точка осталась позади. Поставьте следующую точку и т. После этого начните снова и наметьте вторую линию, идущую из другой начальной точки, и продолжайте так до тех пор, пока вы не получите полную картину распределения линий. Вычерчивание карты магнитного поля с помощью компаса. Приблизьте небольшой компас к северному полюсу магнита и поставьте точку у северного полюса компасной стрелки. Перемещайте компас в направлении, указываемом стрелкой до тех пор, пока точка не окажется сзади ее южного полюса.
Снова поставьте точку впереди северного полюса стрелки и т. Возможно, что некоторые линии вам будет удобно начинать от края листа. Вместо компаса можно воспользоваться железными опилками, которые ведут себя как небольшие компасные стрелки, соединяясь в цепочки, идущие вдоль силовых линий. Опилкам труднее поворачиваться, поэтому помогите им выстроиться, легонько постучав по листу бумаги. Сделайте натурные зарисовки силовых линий для различных расположений магнитов. Железные опилки указывают расположение силовых линий. Помните, что несколько расходящихся в разные стороны линий дают лучшее представление об общей конфигурации поля, чем их густое скопление фиг. На фиг.
Сделайте аналогичные карты для различных расположений магнитов, показанных на фиг. Размер каждой карты должен быть с ладонь руки или больше. Советуем вам при составлении карты пользоваться пунктирными линиями. Помните, что небольшое число основных линий лучше передает общую картину, чем густое скопление. Примеры конфигураций магнитного поля. Примеры расположения магнитов для составления карт магнитного поля. Интерпретация карт магнитного поля Составляя карты различных магнитных полей, мы видим, что они могут кое-что рассказать нам о силах, которые действуют на магниты, создающие эти поля. Силовые линии кажутся похожими на упругие натянутые трубки, которые пытаются сокращаться в продольном направлении, одновременно расталкивая друг друга и выгибаясь в сторону, как если бы они были заполнены жидкостью.
Конфигурация линий между северным и южным полюсами напоминает протянутые навстречу щупальца, что говорит о притяжении; между двумя северными полюсами линии сплюснуты и наталкиваются друг на друга, как буфера, что свидетельствует о силах отталкивания. В более сложных случаях можно заметить, что силовые линии как бы растягивают и изгибают магнит. По мере приближения к полюсу силовые линии сходятся все более тесно. Мы уже знаем, что у полюсов магнитное поле становится сильнее закон обратных квадратов. Так что сгущение силовых линий идет рука об руку с ростом напряженности поля. Если детально исследовать самые различные конфигурации силовых линий, то обнаружится, что чем больше сгущаются линии, тем сильнее становится поле. Таким образом, картина силовых линий может дать нам представление о напряженности поля. В более серьезных курсах магнетизма эта идея преломляется в некоторый способ численного определения напряженности магнитного поля по густоте силовых линий.
Полезно выработать привычку представлять себе магнитные силовые линии как агенты, посредством которых магниты притягивают и отталкивают друг друга, так как это представление приложимо и к магнитным силам, с которыми электрические токи взаимодействуют с другими токами и магнитами. Таким образом, карты магнитных полей дают нам в руки способ наглядного изображения действия электрических моторов, амперметров и т. Электрическое поле имеет совсем другую природу, однако конфигурация силовых линий этого поля также может сказать о его напряженности. Можно представить себе, что радиоволны бегут вдоль комбинации силовых линий электрического и магнитного полей наподобие колебаний туго натянутых веревок. Этот пример дает ощущение того, что силовые линии электрического и магнитного полей вполне реальны. Конечно, не следует забывать, что в действительности существуют не силовые линии, а сами поля. Магнитное поле Земли Если воспользоваться компасом, чтобы построить карту окружающего нас магнитного поля, то мы получим ряд параллельных линий, идущих приблизительно с севера на юг. Подвешенный на нити намагниченный стержень, представляющий собой гигантскую компасную стрелку, повернется в том же направлении.
Эти линии говорят о существовании магнитного поля, которое, разумеется, останется и после того, как мы уберем все наши магниты. Обследовав всю поверхность Земли, мы увидим, что линии сходятся на севере Канады, а также в некоторой области в Австралии. Почти повсюду эти линии идут не горизонтально, а наклонены к земной поверхности[67]. Их направление указывает на то, что Земля похожа на огромный магнит с магнитной осью, слегка повернутой относительно географической оси вращения фиг. Именно это слабое земное магнитное поле используется для навигации с помощью компаса, несмотря на то, что стальные корабли обладают собственным магнитным полем, которое частично имеет переменный характер, что сильно затрудняет навигационное дело. Эквивалентный магнит для внешнего магнитного поля Земли. Северный полюс стрелки компаса указывает на север Канады. Следовательно, там должен находиться южный магнитный полюс Земли.
Этот полюс, однако, называют Северным магнитным полюсом. Если это будет вас затруднять, то избегайте таких сокращений, как «северный полюс», и называйте все полюсы их полными именами, т. Это избавит от путаницы. Когда же вы полностью уясните себе этот вопрос, вам, возможно, снова захочется вернуться ради экономии времени к сокращенным наименованиям. Магнитное поле Земли на значительных пространствах однородно, т. Поэтому с его помощью можно провести очень важный опыт — проверить равноправность северного и южного полюсов магнита. Положим магнит на пробку и пустим его плавать в воду. Земное магнитное поле повернет магнит в направлении N-S.
Будет ли оно также перемещать его в каком-либо определенном направлении, например на север? Если северный и южный полюсы плавающего магнита обладают равной силой хотя создаваемые ими поля противоположны по направлению , можно ожидать, что магнитное поле Земли будет притягивать их одинаково. Под действием такого притяжения магнит повернется вокруг своей оси, но не будет двигаться по поверхности воды ни на север, ни в каком-либо другом направлении. Если же полюсы плавающего магнита неодинаковы, то можно ожидать, что магнитное поле Земли будет действовать на них с различной силой и заставит магнит перемещаться в некотором направлении. Проведите этот важный опыт сами. Хотя земное магнитное поле довольно слабое, оно способно заметно искривить путь электронного пучка. В следующих разделах мы увидим, как магнитное поле может выталкивать проводник с электрическим током, действуя подобно катапульте. Потоки заряженных частиц космического излучения, приходящие из мирового пространства, также заворачиваются земным магнитным полем.
Это позволяет использовать Землю во многих современных экспериментах с космическими лучами как гигантский анализирующий магнит. Как намагничивают магниты В современной практике намагничивание магнитов производится с помощью электрического тока. Для этого ток пропускается не через намагничиваемый металлический брусок, а через намотанную вокруг него проволочную катушку. Магнитное поле внутри длинной цилиндрической катушки соленоида однородно, а напряженность его легко менять, регулируя ток. Поэтому такая катушка чрезвычайно удобна для опытов по намагничиванию. Если мы поместим стальной брусок внутрь соленоида и подадим в катушку ток, то увидим, что при включенном токе брусок намагничивается. После выключения тока брусок по-прежнему остается магнитом, хотя и несколько более слабым. Для намагничивания бруска достаточно пропускать ток через катушку в течение всего лишь доли секунды.
Существует несколько материалов, пригодных для получения таких «постоянных магнитов». Для этой цели подходит большинство сортов закаленной стали. Еще лучше специальные стали, содержащие вольфрам или кобальт. Некоторые новые сплавы, в состав которых входит алюминий, например «алнико», позволяют создавать еще более сильные магниты, однако требуют больших полей для намагничивания. Все эти материалы также можно намагнитить, помещая их на короткое время в магнитное поле. Обращение магнитного поля путем перемены направления тока в катушке меняет и направление намагничивания. Как размагничивают магниты Намагниченный стальной брусок можно полностью размагнитить, помещая его внутрь катушки, через которую пропущен переменный ток, и затем медленно вынимая оттуда. Другой способ — постепенно уменьшать силу переменного тока до нуля с помощью реостата.
Временное намагничивание мягкого железа Пытаясь намагнитить кусок мягкого железа, т. Если ток выключить, брусок почти полностью потеряет магнитные свойства. Мягкое железо оказывается прекрасным материалом для временного намагничивания, поэтому оно используется для изготовления сердечников электромагнитов в электромоторах и других электромагнитных устройствах. Мы можем временно намагнитить брусок из мягкого железа, поднося к нему магнит. Если N-полюс магнита находится около конца А бруска АВ, то стрелка компаса покажет, что брусок приобрел магнитные свойства, причем его южный полюс оказывается в А, т. Если же мы унесем магнит, эти полюсы сразу исчезнут. Теперь вы можете понять, почему ненамагниченные железные опилки притягиваются к магниту. Он намагничивает эти небольшие кусочки железа, но неоднородное магнитное поле оказывает неодинаковое воздействие на их полюсы.
Кусочки железа, близкие к северному полюсу магнита, будут иметь на краю, обращенном к магниту, южный полюс, и этот полюс будет сильно притягиваться к магниту. Их северный полюс будет находиться дальше от магнита, т. Таким образом, опилки будут сильнее притягиваться к магниту, чем отталкиваться от него[68]. Обобщая эти рассуждения, можно сказать, что магнит притягивает любой ненамагниченный кусок железа, создавая в нем временное намагничивание. Даже маленькая компасная стрелка будет временно намагничивать железный брусок. Будучи более подвижной, чем тяжелый брусок, стрелка будет сама поворачиваться и указывать в его сторону. Ее вращение говорит нам только о том, что как стрелка, так и железный брусок могут намагничиваться и что по крайней мере один из них уже намагничен. Следовательно, наблюдая притяжение, нельзя сказать, являются ли магнитами оба тела.
Однако такое заключение легко сделать, если мы увидим, что они отталкиваются. Магнитные и немагнитные материалы Если попытаться намагнитить образцы из меди, железа, стекла и других материалов, помещая их в соленоид с током, то выяснится, что лишь некоторые из этих образцов обнаруживают магнитные свойства. Такие материалы мы называем магнитными. К ним принадлежат железо, многие железные сплавы, никель. Ряд веществ, как, например, жидкий кислород и некоторые соединения железа, тоже в слабой степени проявляют магнитные свойства, но большинство веществ немагнитно. Основываясь на этом, мы говорим, что немагнитные вещества невозможно намагнитить в противоположность магнитным, и последние, если они намагничены, мы называем магнитами. Более тонкие опыты опровергают это простое правило. Многие вещества при помещении их в магнитное поле обнаруживают слабые временные магнитные эффекты, и мы можем проследить их магнитные свойства вплоть до атомного уровня.
Более того, мы в состоянии показать, что некоторые атомы, сами являются магнитами, и знаем способ который будет описан далее , как измерить их магнитные свойства. Даже те немногие металлы, как, например, железо, которым свойственны значительные магнитные эффекты и которые могут служить материалом для постоянных магнитов, также обязаны своими свойствами атомному магнетизму. Их атомы обладают специфической способностью объединяться, при этом атомные магнитики выстраиваются-особым образом, создавая прочные постоянные группы. Атомная теория предсказывает также и другие магнитные свойства атомов. Весьма забавно, что результатом этих предсказаний является отрицательный магнетизм, совсем не похожий на тот, с которым мы всегда встречаемся, и теория утверждает, что им, хотя и в очень слабой степени, обладают все вещества. На чем основаны эти предсказания? Достаточно ли они правдоподобны? Наблюдался ли этот отрицательный магнетизм на опыте?
Если да, то почему же не для всех веществ? На эти вопросы мы кратко ответим в гл. Магнитное поле электрического тока Опыты говорят нам о том, что всякий электрический ток создает вокруг себя магнитное поле. Магнитное поле, окружающее длинную катушку из проволоки, которую часто называют соленоидом, очень похоже на поле намагниченного стержня. При детальном сравнении оказывается, что конфигурации внешних магнитных полей такого стержня и соленоида, имеющего ту же форму и размеры, попросту одинаковы. Можно показать, что внутри полой катушки магнитные силовые линии идут плотным параллельным пучком, образуя сильное однородное магнитное поле. Задача 2 Почему лучше намагничивать стальной стержень, помещая его внутри соленоида с током, а не снаружи? Задача 3 На чертеже а фиг.
Если уменьшать длину соленоида, сжимая его, как гармошку;, конфигурация поля будет меняться, как показано на чертеже б. Представим себе, что катушка сжата до предела чертеж в , так что превратилась в один виток. Можете ли вы предсказать, как будет выглядеть магнитное поле витка с током, представив себе характер сжатия силовых линий? Изобразите ожидаемую конфигурацию поля. Согласуется ли она с опытом? Задача 4 Внешнее магнитное поле соленоида совпадает с полем намагниченного стержня одинаковых размеров и формы. Какую же форму имел бы магнит, создающий такое же поле, как и виток с током в? Нарисуйте или опишите этот эквивалентный магнит.
Если ее подвесить, она будет поворачиваться до тех пор, пока ее ось не укажет в направлении N-S. Она ведет себя так, как будто имеет на концах «полюсы», которые притягивают или отталкивают полюсы других магнитов. Небольшая катушка с током, помещенная в магнитное поле Земли, магнита или другой катушки, будет поворачиваться наподобие стрелки компаса, пока ее магнитная ось не станет параллельной внешнему полю.
В большинстве веществ одинаковое количество электронов вращается в противоположных направлениях, что уравновешивает их магнетизм. Вот почему такие материалы, как ткань или бумага, называются слабомагнитными. В таких веществах, как железо, кобальт и никель, большинство электронов вращаются в одном направлении.
Почему магниты притягиваются? Почему магнит притягивает железо, а не алюминий?
Магнит железо почему притягивает металл
почему магниты магнитят, смысл магнитов, суть магнитизма, магнитный эффект И так, с самой сутью магнита и его природой действия разобрались. Расплавленное железо против магнита: увлекательный эксперимент. Как ведет себя расплавленное железо и обладает ли оно магнитными свойствами? – Серебро, золото, медь магнит не притягивает. Только сталь, железо, чугун. 1) Магниты притягивают и захватывают небольшие кусочки железа.
Какая сила заставляет магнит притягивать, и как её применяют
Если вам понравилась эта статья, почему бы также не прочитать о том, почему магниты притягивают металл или факты о счетах? Если бы физические свойства железа позволяли бы магниту проникнуть в тело железа без сопротивления, то магнит остановился бы в точке равновесия действующих сил. Почему иногда магнит притягивает монеты? — современные монеты чаще всего делаются из ферромагнетиков с покрытием.
Новосибирский школьник «притягивает» к себе ложки и мелочь — его мама сняла это на видео
Поля двух магнитов вблизи могут взаимодействовать между собой, и это взаимодействие проявляется как притяжение или отталкивание магнитов. Почему магнит притягивает железо. Магнитом является тело, которое обладает собственным магнитным полем. В магнитном поле ощущается некоторое воздействие на внешние предметы, которые находятся рядом, наиболее очевидное – способность магнита притянуть металл. Тем не менее немногие способны объяснить, что заставляет магнит притягивать, и почему его силе подвластно именно железо. Основная причина, почему железо притягивается к магниту, заключается в его атомной структуре. Магнит может притягивать чаще всего такой металл как железо. Это объясняет, почему железо притягивается к магниту с большой силой.
Две концепции магнетизма
- Почему магнит притягивает только металл
- Две концепции магнетизма
- Что такое магнит и как он устроен?
- Магнит. 4. Почему к постоянному магниту притягиваются и другой магнит, и кусок железа?
- Неодимовый магнит – суперсильный и суперполезный
Неодимовый магнит – суперсильный и суперполезный
Почему Магнит Притягивает Железо | Таким образом, магниты притягивают только железо из-за взаимодействия их магнитного поля с магнитными моментами электронов в атомах железа. |
Почему магнит притягивает? Описание, фото и видео | Может ли мощный магнит притянуть железо в нашей крови? вот говорят, подобное тянется к подобному, а как же тогда "противоположное притягивается" например магнит? |
Почему магнит притягивает железо? — точный ответ! | Какое железо притягивает магнит. |
Почему магнит притягивает железо? Магнит. | Почему железо притягивается к магниту. Почему магнит не притягивает органические вещества? |
Расплавленное железо и магнит: необычный эксперимент | Почему железо притягивается к магниту. Почему магнит не притягивает органические вещества? |
Притягивает ли магнит железо?
Какие металлы притягивает поисковый магнит? | Почему магнит притягивает железо. Магнитом является тело, которое обладает собственным магнитным полем. В магнитном поле ощущается некоторое воздействие на внешние предметы, которые находятся рядом, наиболее очевидное – способность магнита притянуть металл. |
«Что такое магнит и почему он притягивает железо?» Учёные ответы на детские вопросы... | В статье расскажем, работает ли поисковый магнит на золото и серебро, как он устроен и действительно ли притягивает драгметаллы. |